#ifndef YOLOV5_COMMON_H_ #define YOLOV5_COMMON_H_ #include #include #include #include #include #include "NvInfer.h" #include "yololayer.h" using namespace nvinfer1; cv::Rect get_rect(cv::Mat& img, float bbox[4]) { int l, r, t, b; float r_w = Yolo::INPUT_W / (img.cols * 1.0); float r_h = Yolo::INPUT_H / (img.rows * 1.0); if (r_h > r_w) { l = bbox[0] - bbox[2] / 2.f; r = bbox[0] + bbox[2] / 2.f; t = bbox[1] - bbox[3] / 2.f - (Yolo::INPUT_H - r_w * img.rows) / 2; b = bbox[1] + bbox[3] / 2.f - (Yolo::INPUT_H - r_w * img.rows) / 2; l = l / r_w; r = r / r_w; t = t / r_w; b = b / r_w; } else { l = bbox[0] - bbox[2] / 2.f - (Yolo::INPUT_W - r_h * img.cols) / 2; r = bbox[0] + bbox[2] / 2.f - (Yolo::INPUT_W - r_h * img.cols) / 2; t = bbox[1] - bbox[3] / 2.f; b = bbox[1] + bbox[3] / 2.f; l = l / r_h; r = r / r_h; t = t / r_h; b = b / r_h; } return cv::Rect(l, t, r - l, b - t); } float iou(float lbox[4], float rbox[4]) { float interBox[] = { (std::max)(lbox[0] - lbox[2] / 2.f , rbox[0] - rbox[2] / 2.f), //left (std::min)(lbox[0] + lbox[2] / 2.f , rbox[0] + rbox[2] / 2.f), //right (std::max)(lbox[1] - lbox[3] / 2.f , rbox[1] - rbox[3] / 2.f), //top (std::min)(lbox[1] + lbox[3] / 2.f , rbox[1] + rbox[3] / 2.f), //bottom }; if (interBox[2] > interBox[3] || interBox[0] > interBox[1]) return 0.0f; float interBoxS = (interBox[1] - interBox[0])*(interBox[3] - interBox[2]); return interBoxS / (lbox[2] * lbox[3] + rbox[2] * rbox[3] - interBoxS); } bool cmp(const Yolo::Detection& a, const Yolo::Detection& b) { return a.conf > b.conf; } void nms(std::vector& res, float *output, float conf_thresh, float nms_thresh = 0.5) { int det_size = sizeof(Yolo::Detection) / sizeof(float); std::map> m; for (int i = 0; i < output[0] && i < Yolo::MAX_OUTPUT_BBOX_COUNT; i++) { if (output[1 + det_size * i + 4] <= conf_thresh) continue; Yolo::Detection det; memcpy(&det, &output[1 + det_size * i], det_size * sizeof(float)); if (m.count(det.class_id) == 0) m.emplace(det.class_id, std::vector()); m[det.class_id].push_back(det); } for (auto it = m.begin(); it != m.end(); it++) { //std::cout << it->second[0].class_id << " --- " << std::endl; auto& dets = it->second; std::sort(dets.begin(), dets.end(), cmp); for (size_t m = 0; m < dets.size(); ++m) { auto& item = dets[m]; res.push_back(item); for (size_t n = m + 1; n < dets.size(); ++n) { if (iou(item.bbox, dets[n].bbox) > nms_thresh) { dets.erase(dets.begin() + n); --n; } } } } } // TensorRT weight files have a simple space delimited format: // [type] [size] std::map loadWeights(const std::string file) { std::cout << "Loading weights: " << file << std::endl; std::map weightMap; // Open weights file std::ifstream input(file); assert(input.is_open() && "Unable to load weight file. please check if the .wts file path is right!!!!!!"); // Read number of weight blobs int32_t count; input >> count; assert(count > 0 && "Invalid weight map file."); while (count--) { Weights wt{ DataType::kFLOAT, nullptr, 0 }; uint32_t size; // Read name and type of blob std::string name; input >> name >> std::dec >> size; wt.type = DataType::kFLOAT; // Load blob uint32_t* val = reinterpret_cast(malloc(sizeof(val) * size)); for (uint32_t x = 0, y = size; x < y; ++x) { input >> std::hex >> val[x]; } wt.values = val; wt.count = size; weightMap[name] = wt; } return weightMap; } IScaleLayer* addBatchNorm2d(INetworkDefinition *network, std::map& weightMap, ITensor& input, std::string lname, float eps) { float *gamma = (float*)weightMap[lname + ".weight"].values; float *beta = (float*)weightMap[lname + ".bias"].values; float *mean = (float*)weightMap[lname + ".running_mean"].values; float *var = (float*)weightMap[lname + ".running_var"].values; int len = weightMap[lname + ".running_var"].count; float *scval = reinterpret_cast(malloc(sizeof(float) * len)); for (int i = 0; i < len; i++) { scval[i] = gamma[i] / sqrt(var[i] + eps); } Weights scale{ DataType::kFLOAT, scval, len }; float *shval = reinterpret_cast(malloc(sizeof(float) * len)); for (int i = 0; i < len; i++) { shval[i] = beta[i] - mean[i] * gamma[i] / sqrt(var[i] + eps); } Weights shift{ DataType::kFLOAT, shval, len }; float *pval = reinterpret_cast(malloc(sizeof(float) * len)); for (int i = 0; i < len; i++) { pval[i] = 1.0; } Weights power{ DataType::kFLOAT, pval, len }; weightMap[lname + ".scale"] = scale; weightMap[lname + ".shift"] = shift; weightMap[lname + ".power"] = power; IScaleLayer* scale_1 = network->addScale(input, ScaleMode::kCHANNEL, shift, scale, power); assert(scale_1); return scale_1; } ILayer* convBlock(INetworkDefinition *network, std::map& weightMap, ITensor& input, int outch, int ksize, int s, int g, std::string lname) { Weights emptywts{ DataType::kFLOAT, nullptr, 0 }; int p = ksize / 2; IConvolutionLayer* conv1 = network->addConvolutionNd(input, outch, DimsHW{ ksize, ksize }, weightMap[lname + ".conv.weight"], emptywts); assert(conv1); conv1->setStrideNd(DimsHW{ s, s }); conv1->setPaddingNd(DimsHW{ p, p }); conv1->setNbGroups(g); IScaleLayer* bn1 = addBatchNorm2d(network, weightMap, *conv1->getOutput(0), lname + ".bn", 1e-3); // silu = x * sigmoid // auto sig = network->addActivation(*bn1->getOutput(0), ActivationType::kSIGMOID); // assert(sig); // auto ew = network->addElementWise(*bn1->getOutput(0), *sig->getOutput(0), ElementWiseOperation::kPROD); // assert(ew); // hard_swish = x * hard_sigmoid auto hsig = network->addActivation(*bn1->getOutput(0), ActivationType::kHARD_SIGMOID); assert(hsig); hsig->setAlpha(1.0 / 6.0); hsig->setBeta(0.5); auto ew = network->addElementWise(*bn1->getOutput(0), *hsig->getOutput(0), ElementWiseOperation::kPROD); assert(ew); return ew; } ILayer* focus(INetworkDefinition *network, std::map& weightMap, ITensor& input, int inch, int outch, int ksize, std::string lname) { ISliceLayer *s1 = network->addSlice(input, Dims3{ 0, 0, 0 }, Dims3{ inch, Yolo::INPUT_H / 2, Yolo::INPUT_W / 2 }, Dims3{ 1, 2, 2 }); ISliceLayer *s2 = network->addSlice(input, Dims3{ 0, 1, 0 }, Dims3{ inch, Yolo::INPUT_H / 2, Yolo::INPUT_W / 2 }, Dims3{ 1, 2, 2 }); ISliceLayer *s3 = network->addSlice(input, Dims3{ 0, 0, 1 }, Dims3{ inch, Yolo::INPUT_H / 2, Yolo::INPUT_W / 2 }, Dims3{ 1, 2, 2 }); ISliceLayer *s4 = network->addSlice(input, Dims3{ 0, 1, 1 }, Dims3{ inch, Yolo::INPUT_H / 2, Yolo::INPUT_W / 2 }, Dims3{ 1, 2, 2 }); ITensor* inputTensors[] = { s1->getOutput(0), s2->getOutput(0), s3->getOutput(0), s4->getOutput(0) }; auto cat = network->addConcatenation(inputTensors, 4); auto conv = convBlock(network, weightMap, *cat->getOutput(0), outch, ksize, 1, 1, lname + ".conv"); return conv; } ILayer* bottleneck(INetworkDefinition *network, std::map& weightMap, ITensor& input, int c1, int c2, bool shortcut, int g, float e, std::string lname) { auto cv1 = convBlock(network, weightMap, input, (int)((float)c2 * e), 1, 1, 1, lname + ".cv1"); auto cv2 = convBlock(network, weightMap, *cv1->getOutput(0), c2, 3, 1, g, lname + ".cv2"); if (shortcut && c1 == c2) { auto ew = network->addElementWise(input, *cv2->getOutput(0), ElementWiseOperation::kSUM); return ew; } return cv2; } ILayer* bottleneckCSP(INetworkDefinition *network, std::map& weightMap, ITensor& input, int c1, int c2, int n, bool shortcut, int g, float e, std::string lname) { Weights emptywts{ DataType::kFLOAT, nullptr, 0 }; int c_ = (int)((float)c2 * e); auto cv1 = convBlock(network, weightMap, input, c_, 1, 1, 1, lname + ".cv1"); auto cv2 = network->addConvolutionNd(input, c_, DimsHW{ 1, 1 }, weightMap[lname + ".cv2.weight"], emptywts); ITensor *y1 = cv1->getOutput(0); for (int i = 0; i < n; i++) { auto b = bottleneck(network, weightMap, *y1, c_, c_, shortcut, g, 1.0, lname + ".m." + std::to_string(i)); y1 = b->getOutput(0); } auto cv3 = network->addConvolutionNd(*y1, c_, DimsHW{ 1, 1 }, weightMap[lname + ".cv3.weight"], emptywts); ITensor* inputTensors[] = { cv3->getOutput(0), cv2->getOutput(0) }; auto cat = network->addConcatenation(inputTensors, 2); IScaleLayer* bn = addBatchNorm2d(network, weightMap, *cat->getOutput(0), lname + ".bn", 1e-4); auto lr = network->addActivation(*bn->getOutput(0), ActivationType::kLEAKY_RELU); lr->setAlpha(0.1); auto cv4 = convBlock(network, weightMap, *lr->getOutput(0), c2, 1, 1, 1, lname + ".cv4"); return cv4; } ILayer* C3(INetworkDefinition *network, std::map& weightMap, ITensor& input, int c1, int c2, int n, bool shortcut, int g, float e, std::string lname) { int c_ = (int)((float)c2 * e); auto cv1 = convBlock(network, weightMap, input, c_, 1, 1, 1, lname + ".cv1"); auto cv2 = convBlock(network, weightMap, input, c_, 1, 1, 1, lname + ".cv2"); ITensor *y1 = cv1->getOutput(0); for (int i = 0; i < n; i++) { auto b = bottleneck(network, weightMap, *y1, c_, c_, shortcut, g, 1.0, lname + ".m." + std::to_string(i)); y1 = b->getOutput(0); } ITensor* inputTensors[] = { y1, cv2->getOutput(0) }; auto cat = network->addConcatenation(inputTensors, 2); auto cv3 = convBlock(network, weightMap, *cat->getOutput(0), c2, 1, 1, 1, lname + ".cv3"); return cv3; } ILayer* SPP(INetworkDefinition *network, std::map& weightMap, ITensor& input, int c1, int c2, int k1, int k2, int k3, std::string lname) { int c_ = c1 / 2; auto cv1 = convBlock(network, weightMap, input, c_, 1, 1, 1, lname + ".cv1"); auto pool1 = network->addPoolingNd(*cv1->getOutput(0), PoolingType::kMAX, DimsHW{ k1, k1 }); pool1->setPaddingNd(DimsHW{ k1 / 2, k1 / 2 }); pool1->setStrideNd(DimsHW{ 1, 1 }); auto pool2 = network->addPoolingNd(*cv1->getOutput(0), PoolingType::kMAX, DimsHW{ k2, k2 }); pool2->setPaddingNd(DimsHW{ k2 / 2, k2 / 2 }); pool2->setStrideNd(DimsHW{ 1, 1 }); auto pool3 = network->addPoolingNd(*cv1->getOutput(0), PoolingType::kMAX, DimsHW{ k3, k3 }); pool3->setPaddingNd(DimsHW{ k3 / 2, k3 / 2 }); pool3->setStrideNd(DimsHW{ 1, 1 }); ITensor* inputTensors[] = { cv1->getOutput(0), pool1->getOutput(0), pool2->getOutput(0), pool3->getOutput(0) }; auto cat = network->addConcatenation(inputTensors, 4); auto cv2 = convBlock(network, weightMap, *cat->getOutput(0), c2, 1, 1, 1, lname + ".cv2"); return cv2; } ILayer* preprocess_layer(INetworkDefinition *network, std::map& weightMap, ITensor& input) { // rescale auto rescale = network->addResize(input); rescale->setOutputDimensions(Dims3{ 3, Yolo::IMG_H, Yolo::IMG_W }); rescale->setResizeMode(ResizeMode::kLINEAR); // normalize // long len = 3 * Yolo::IMG_H * Yolo::IMG_W; // float *normval = reinterpret_cast(malloc(sizeof(float) * len)); // for (size_t i = 0; i < len; ++i) { // normval[i] = 255.0; // } // Weights norm{ DataType::kFLOAT, normval, len }; // weightMap["prep.norm"] = norm; // auto constant = network->addConstant(Dims3{ 3, Yolo::IMG_H, Yolo::IMG_W }, norm); // auto normalize = network->addElementWise(*rescale->getOutput(0), *constant->getOutput(0), ElementWiseOperation::kDIV); //paddng auto padding = network->addPaddingNd(*rescale->getOutput(0), DimsHW{ (Yolo::INPUT_H - Yolo::IMG_H) / 2, (Yolo::INPUT_W - Yolo::IMG_W) / 2 }, DimsHW{ (Yolo::INPUT_H - Yolo::IMG_H) / 2, (Yolo::INPUT_W - Yolo::IMG_W) / 2 }); assert(padding); return padding; } std::vector getAnchors(std::map& weightMap) { std::vector anchors_yolo; Weights Yolo_Anchors = weightMap["model.24.anchor_grid"]; assert(Yolo_Anchors.count == 18); int each_yololayer_anchorsnum = Yolo_Anchors.count / 3; const float* tempAnchors = (const float*)(Yolo_Anchors.values); for (int i = 0; i < Yolo_Anchors.count; i++) { if (i < each_yololayer_anchorsnum) { anchors_yolo.push_back(const_cast(tempAnchors)[i]); } if ((i >= each_yololayer_anchorsnum) && (i < (2 * each_yololayer_anchorsnum))) { anchors_yolo.push_back(const_cast(tempAnchors)[i]); } if (i >= (2 * each_yololayer_anchorsnum)) { anchors_yolo.push_back(const_cast(tempAnchors)[i]); } } return anchors_yolo; } IPluginV2Layer* addYoLoLayer(INetworkDefinition *network, std::map& weightMap, IConvolutionLayer* det0, IConvolutionLayer* det1, IConvolutionLayer* det2) { auto creator = getPluginRegistry()->getPluginCreator("YoloLayer_TRT", "1"); std::vector anchors_yolo = getAnchors(weightMap); PluginField pluginMultidata[4]; int NetData[4]; NetData[0] = Yolo::CLASS_NUM; NetData[1] = Yolo::INPUT_W; NetData[2] = Yolo::INPUT_H; NetData[3] = Yolo::MAX_OUTPUT_BBOX_COUNT; pluginMultidata[0].data = NetData; pluginMultidata[0].length = 3; pluginMultidata[0].name = "netdata"; pluginMultidata[0].type = PluginFieldType::kFLOAT32; int scale[3] = { 8, 16, 32 }; int plugindata[3][8]; std::string names[3]; for (int k = 1; k < 4; k++) { plugindata[k - 1][0] = Yolo::INPUT_W / scale[k - 1]; plugindata[k - 1][1] = Yolo::INPUT_H / scale[k - 1]; for (int i = 2; i < 8; i++) { plugindata[k - 1][i] = int(anchors_yolo[(k - 1) * 6 + i - 2]); } pluginMultidata[k].data = plugindata[k - 1]; pluginMultidata[k].length = 8; names[k - 1] = "yolodata" + std::to_string(k); pluginMultidata[k].name = names[k - 1].c_str(); pluginMultidata[k].type = PluginFieldType::kFLOAT32; } PluginFieldCollection pluginData; pluginData.nbFields = 4; pluginData.fields = pluginMultidata; IPluginV2 *pluginObj = creator->createPlugin("yololayer", &pluginData); ITensor* inputTensors_yolo[] = { det2->getOutput(0), det1->getOutput(0), det0->getOutput(0) }; auto yolo = network->addPluginV2(inputTensors_yolo, 3, *pluginObj); return yolo; } #endif