|
|
|
|
|
import numpy as np |
|
import torch |
|
import yaml |
|
from scipy.cluster.vq import kmeans |
|
from tqdm import tqdm |
|
from lib.utils import is_parallel |
|
|
|
|
|
def check_anchor_order(m): |
|
|
|
a = m.anchor_grid.prod(-1).view(-1) |
|
da = a[-1] - a[0] |
|
ds = m.stride[-1] - m.stride[0] |
|
if da.sign() != ds.sign(): |
|
print('Reversing anchor order') |
|
m.anchors[:] = m.anchors.flip(0) |
|
m.anchor_grid[:] = m.anchor_grid.flip(0) |
|
|
|
|
|
def run_anchor(logger,dataset, model, thr=4.0, imgsz=640): |
|
det = model.module.model[model.module.detector_index] if is_parallel(model) \ |
|
else model.model[model.detector_index] |
|
anchor_num = det.na * det.nl |
|
new_anchors = kmean_anchors(dataset, n=anchor_num, img_size=imgsz, thr=thr, gen=1000, verbose=False) |
|
new_anchors = torch.tensor(new_anchors, device=det.anchors.device).type_as(det.anchors) |
|
det.anchor_grid[:] = new_anchors.clone().view_as(det.anchor_grid) |
|
det.anchors[:] = new_anchors.clone().view_as(det.anchors) / det.stride.to(det.anchors.device).view(-1, 1, 1) |
|
check_anchor_order(det) |
|
logger.info(str(det.anchors)) |
|
print('New anchors saved to model. Update model config to use these anchors in the future.') |
|
|
|
|
|
def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True): |
|
""" Creates kmeans-evolved anchors from training dataset |
|
|
|
Arguments: |
|
path: path to dataset *.yaml, or a loaded dataset |
|
n: number of anchors |
|
img_size: image size used for training |
|
thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0 |
|
gen: generations to evolve anchors using genetic algorithm |
|
verbose: print all results |
|
|
|
Return: |
|
k: kmeans evolved anchors |
|
|
|
Usage: |
|
from utils.autoanchor import *; _ = kmean_anchors() |
|
""" |
|
thr = 1. / thr |
|
|
|
def metric(k, wh): |
|
r = wh[:, None] / k[None] |
|
x = torch.min(r, 1. / r).min(2)[0] |
|
|
|
return x, x.max(1)[0] |
|
|
|
def anchor_fitness(k): |
|
_, best = metric(torch.tensor(k, dtype=torch.float32), wh) |
|
return (best * (best > thr).float()).mean() |
|
|
|
def print_results(k): |
|
k = k[np.argsort(k.prod(1))] |
|
x, best = metric(k, wh0) |
|
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n |
|
print('thr=%.2f: %.4f best possible recall, %.2f anchors past thr' % (thr, bpr, aat)) |
|
print('n=%g, img_size=%s, metric_all=%.3f/%.3f-mean/best, past_thr=%.3f-mean: ' % |
|
(n, img_size, x.mean(), best.mean(), x[x > thr].mean()), end='') |
|
for i, x in enumerate(k): |
|
print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') |
|
return k |
|
|
|
if isinstance(path, str): |
|
raise TypeError('Dataset must be class, but found str') |
|
else: |
|
dataset = path |
|
|
|
labels = [db['label'] for db in dataset.db] |
|
labels = np.vstack(labels) |
|
if not (labels[:, 1:] <= 1).all(): |
|
|
|
labels[:, [2, 4]] /= dataset.shapes[0] |
|
labels[:, [1, 3]] /= dataset.shapes[1] |
|
|
|
shapes = img_size * dataset.shapes / dataset.shapes.max() |
|
|
|
wh0 = labels[:, 3:5] * shapes |
|
|
|
i = (wh0 < 3.0).any(1).sum() |
|
if i: |
|
print('WARNING: Extremely small objects found. ' |
|
'%g of %g labels are < 3 pixels in width or height.' % (i, len(wh0))) |
|
wh = wh0[(wh0 >= 2.0).any(1)] |
|
|
|
|
|
print('Running kmeans for %g anchors on %g points...' % (n, len(wh))) |
|
s = wh.std(0) |
|
k, dist = kmeans(wh / s, n, iter=30) |
|
k *= s |
|
wh = torch.tensor(wh, dtype=torch.float32) |
|
wh0 = torch.tensor(wh0, dtype=torch.float32) |
|
k = print_results(k) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
npr = np.random |
|
f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 |
|
pbar = tqdm(range(gen), desc='Evolving anchors with Genetic Algorithm') |
|
for _ in pbar: |
|
v = np.ones(sh) |
|
while (v == 1).all(): |
|
v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0) |
|
kg = (k.copy() * v).clip(min=2.0) |
|
fg = anchor_fitness(kg) |
|
if fg > f: |
|
f, k = fg, kg.copy() |
|
pbar.desc = 'Evolving anchors with Genetic Algorithm: fitness = %.4f' % f |
|
if verbose: |
|
print_results(k) |
|
|
|
return print_results(k) |
|
|