Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) dadjokes-tuned-opt - AWQ - Model creator: https://huggingface.co/gnumanth/ - Original model: https://huggingface.co/gnumanth/dadjokes-tuned-opt/ Original model description: --- license: mit base_model: facebook/opt-350m tags: - trl - sft - gnumanth/dadjokes-trained-opt model-index: - name: tmp_trainer results: [] datasets: - gnumanth/dad-jokes language: - en pipeline_tag: text-generation widget: - text: "joke" --- # This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on an [gnumanth/dad-jokes](https://huggingface.co/datasets/gnumanth/dad-jokes) dataset. ## Model description SFT Trained simple model for fun! ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ``` TrainOutput(global_step=18, training_loss=2.2378472222222223, metrics={'train_runtime': 149.7511, 'train_samples_per_second': 0.881, 'train_steps_per_second': 0.12, 'total_flos': 9828797644800.0, 'train_loss': 2.2378472222222223, 'epoch': 3.0}) ``` ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.1