Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) LawToken-1.5B-baseline - AWQ - Model creator: https://huggingface.co/amy011872/ - Original model: https://huggingface.co/amy011872/LawToken-1.5B-baseline/ Original model description: --- license: apache-2.0 base_model: Qwen/Qwen2-1.5B tags: - trl - sft - generated_from_trainer datasets: - generator model-index: - name: LawToken-1.5B-baseline results: [] --- # LawToken-1.5B-baseline This model is a fine-tuned version of [Qwen/Qwen2-1.5B](https://huggingface.co/Qwen/Qwen2-1.5B) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 0.7613 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 16 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 0.03 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.9956 | 0.27 | 10000 | 0.9392 | | 0.8306 | 0.54 | 20000 | 0.8382 | | 0.7346 | 0.8 | 30000 | 0.7613 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.3.0a0+ebedce2 - Datasets 2.19.1 - Tokenizers 0.15.2