Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) asm2asm-qwen-1.5b-100k-float16-attn - AWQ - Model creator: https://huggingface.co/ahmedheakl/ - Original model: https://huggingface.co/ahmedheakl/asm2asm-qwen-1.5b-100k-float16-attn/ Original model description: --- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2-1.5B-Instruct tags: - trl - sft - generated_from_trainer model-index: - name: asm2asm-qwen-1.5b-100k-float16-attn results: [] --- # asm2asm-qwen-1.5b-100k-float16-attn This model is a fine-tuned version of [Qwen/Qwen2-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2-1.5B-Instruct) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu118 - Datasets 3.0.0 - Tokenizers 0.19.1