Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) anime-anything-promptgen-v2 - bnb 4bits - Model creator: https://huggingface.co/FredZhang7/ - Original model: https://huggingface.co/FredZhang7/anime-anything-promptgen-v2/ Original model description: --- license: creativeml-openrail-m language: - en widget: - text: 1girl, fate - text: 1boy, league of - text: 1girl, genshin - text: 1boy, national basketball association - text: 1girl, spy x - text: 1girl, absurdres tags: - stable-diffusion - anime - anything-v4 - art - arxiv:2210.14140 datasets: - FredZhang7/anime-prompts-180K --- ## Fast Anime PromptGen This model was trained on a dataset of **80,000** safe anime prompts for 3 epochs. I fetched the prompts from the [Safebooru API endpoint](https://safebooru.donmai.us/posts/random.json), but only accepted unique prompts with **up_score ≥ 8** and without any [blacklisted tags](./blacklist.txt). I didn't release the V1 model because it often generated gibberish prompts. After trying all means to correct that behavior, I eventually figured that the cause of the gibberish prompts is not from the pipeline params, model structure or training duration, but rather from the random usernames in the training data. Here's the complete [prompt preprocessing algorithm](./preprocess.py). ## Text-to-image Examples Prefix *1girl* | [Generated *1girl* prompts](./anime_girl_settings.txt) | Model *Anything V4* ![](./anime_girls.png) Prefix *1boy*  | [Generated *1boy* prompts](./anime_boy_settings.txt) | Model *Anything V4* ![](./anime_boys.png) ## Contrastive Search ``` pip install --upgrade transformers ``` ```python import torch from transformers import GPT2Tokenizer, GPT2LMHeadModel, pipeline tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2') tokenizer.add_special_tokens({'pad_token': '[PAD]'}) model = GPT2LMHeadModel.from_pretrained('FredZhang7/anime-anything-promptgen-v2') prompt = r'1girl, genshin' # generate text using fine-tuned model nlp = pipeline('text-generation', model=model, tokenizer=tokenizer) # generate 10 samples using contrastive search outs = nlp(prompt, max_length=76, num_return_sequences=10, do_sample=True, repetition_penalty=1.2, temperature=0.7, top_k=4, early_stopping=True) print('\nInput:\n' + 100 * '-') print('\033[96m' + prompt + '\033[0m') print('\nOutput:\n' + 100 * '-') for i in range(len(outs)): # remove trailing commas and double spaces outs[i] = str(outs[i]['generated_text']).replace(' ', '').rstrip(',') print('\033[92m' + '\n\n'.join(outs) + '\033[0m\n') ``` Output Example: ![](./contrastive_search.png) Please see [Fast GPT PromptGen](https://huggingface.co/FredZhang7/distilgpt2-stable-diffusion-v2) for more info on the pipeline parameters. ## Awesome Tips - If you feel like a generated anime character doesn't show emotions, try emoticons like `;o`, `:o`, `;p`, `:d`, `:p`, and `;d` in the prompt. I also use `happy smirk`, `happy smile`, `laughing closed eyes`, etc. to make the characters more lively and expressive. - Adding `absurdres`, instead of `highres` and `masterpiece`, to a prompt can drastically increase the sharpness and resolution of a generated image. ## Danbooru [Link to the Danbooru version](https://huggingface.co/FredZhang7/danbooru-tag-generator)