Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
WizardCoder-1B-V1.0-dpo-beta-0.01 - AWQ
- Model creator: https://huggingface.co/AlekseyKorshuk/
- Original model: https://huggingface.co/AlekseyKorshuk/WizardCoder-1B-V1.0-dpo-beta-0.01/
Original model description:
---
license: bigcode-openrail-m
base_model: WizardLM/WizardCoder-1B-V1.0
tags:
- axolotl
- dpo
- trl
- dpo
- generated_from_trainer
model-index:
- name: WizardCoder-1B-V1.0-dpo-beta-0.01
results: []
---
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.0`
```yaml
base_model: WizardLM/WizardCoder-1B-V1.0
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true
hub_model_id: AlekseyKorshuk/WizardCoder-1B-V1.0-dpo-beta-0.01
hub_strategy: every_save
load_in_8bit: false
load_in_4bit: false
strict: false
rl: dpo
datasets:
- path: AlekseyKorshuk/evol-codealpaca-v1-dpo
split: train
type: wizardcoder.intel
dataset_prepared_path:
#val_set_size: 0.001
output_dir: ./output
sequence_len: 2048
#sample_packing: false # currently unsupported
pad_to_sequence_len:
lora_r:
lora_alpha:
lora_dropout:
lora_target_modules:
lora_target_linear:
lora_fan_in_fan_out:
wandb_project: ui-thesis
wandb_entity:
wandb_watch:
wandb_name: ultrachat-stable-code-3b-dpo-chatml-beta-0.01
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 4
num_epochs: 1
optimizer: paged_adamw_8bit
adam_beta1: 0.9
adam_beta2: 0.95
max_grad_norm: 1.0
adam_epsilon: 0.00001
lr_scheduler: cosine
cosine_min_lr_ratio: 0.1
learning_rate: 8.0e-7
warmup_steps: 32
#warmup_ratio: 0.1
weight_decay: 0.01
dpo_beta: 0.01
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: true
#float16: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: false
#evals_per_epoch: 5
#eval_table_size: 8 # Approximate number of predictions sent to wandb depending on batch size. Enabled above 0. Default is 0
#eval_table_max_new_tokens: 768 # Total number of tokens generated for predictions sent to wandb. Default is 128
#chat_template: chatml
#saves_per_epoch: 1
save_steps: 500
save_total_limit: 1
seed: 42
debug:
deepspeed:
fsdp:
fsdp_config:
resize_token_embeddings_to_32x: true
```
# WizardCoder-1B-V1.0-dpo-beta-0.01
This model is a fine-tuned version of [WizardLM/WizardCoder-1B-V1.0](https://huggingface.co/WizardLM/WizardCoder-1B-V1.0) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-07
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 32
- training_steps: 312
### Training results
### Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0