Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) WizardCoder-1B-V1.0-dpo-beta-0.01 - AWQ - Model creator: https://huggingface.co/AlekseyKorshuk/ - Original model: https://huggingface.co/AlekseyKorshuk/WizardCoder-1B-V1.0-dpo-beta-0.01/ Original model description: --- license: bigcode-openrail-m base_model: WizardLM/WizardCoder-1B-V1.0 tags: - axolotl - dpo - trl - dpo - generated_from_trainer model-index: - name: WizardCoder-1B-V1.0-dpo-beta-0.01 results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: WizardLM/WizardCoder-1B-V1.0 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer trust_remote_code: true hub_model_id: AlekseyKorshuk/WizardCoder-1B-V1.0-dpo-beta-0.01 hub_strategy: every_save load_in_8bit: false load_in_4bit: false strict: false rl: dpo datasets: - path: AlekseyKorshuk/evol-codealpaca-v1-dpo split: train type: wizardcoder.intel dataset_prepared_path: #val_set_size: 0.001 output_dir: ./output sequence_len: 2048 #sample_packing: false # currently unsupported pad_to_sequence_len: lora_r: lora_alpha: lora_dropout: lora_target_modules: lora_target_linear: lora_fan_in_fan_out: wandb_project: ui-thesis wandb_entity: wandb_watch: wandb_name: ultrachat-stable-code-3b-dpo-chatml-beta-0.01 wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 4 num_epochs: 1 optimizer: paged_adamw_8bit adam_beta1: 0.9 adam_beta2: 0.95 max_grad_norm: 1.0 adam_epsilon: 0.00001 lr_scheduler: cosine cosine_min_lr_ratio: 0.1 learning_rate: 8.0e-7 warmup_steps: 32 #warmup_ratio: 0.1 weight_decay: 0.01 dpo_beta: 0.01 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: true #float16: true gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: false #evals_per_epoch: 5 #eval_table_size: 8 # Approximate number of predictions sent to wandb depending on batch size. Enabled above 0. Default is 0 #eval_table_max_new_tokens: 768 # Total number of tokens generated for predictions sent to wandb. Default is 128 #chat_template: chatml #saves_per_epoch: 1 save_steps: 500 save_total_limit: 1 seed: 42 debug: deepspeed: fsdp: fsdp_config: resize_token_embeddings_to_32x: true ```

# WizardCoder-1B-V1.0-dpo-beta-0.01 This model is a fine-tuned version of [WizardLM/WizardCoder-1B-V1.0](https://huggingface.co/WizardLM/WizardCoder-1B-V1.0) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-07 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 32 - training_steps: 312 ### Training results ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0