--- language: - en tags: - information retrieval - embedding model - visual information retrieval metrics: - recall pipeline_tag: feature-extraction --- # Memex: An OCR-free Visual-Based Document Embedding Model Based on MiniCPM-V-2.0 With MiniCPM-Visual-Embedding, it is possible to directly build knowledge base with raw PDF/Book/Document without any OCR technique nor OCR pipeline. The model only takes images as document-side inputs and produce vectors representing document pages. minicpm-visual-embedding-v0 is trained with over 30k paired query - visual document pages, including textual document, visual document, arxiv figures, industry documents, textbooks, ebooks, etc. The performance of minicpm-visual-embedding-v0 is on a par with a text embedding on text-oriented documents, and an advantages on visually-intensive documents. [Github Repo](https://github.com/bokesyo/minicpm-visual-embedding) ![Memex Archtechture](images/memex.png) # News - 2024-06-27: We released our first visual embedding model checkpoint minicpm-visual-embedding-v0 on [huggingface](https://huggingface.co/RhapsodyAI/minicpm-visual-embedding-v0). - 2024-05-08: We [committed](https://github.com/bokesyo/minicpm-visual-embedding) our training code (full-parameter tuning with GradCache and DeepSpeed, supports large batch size across multiple GPUs with zero-stage1) and eval code. # Get started Pip install all dependencies: ``` Pillow==10.1.0 timm==0.9.10 torch==2.1.2 torchvision==0.16.2 transformers==4.36.0 sentencepiece==0.1.99 numpy==1.26.0 ``` First you are suggested to git clone this huggingface repo or download repo with `huggingface_cli`. ```bash git lfs install git clone https://huggingface.co/RhapsodyAI/minicpm-visual-embedding-v0 ``` or ```bash huggingface-cli download RhapsodyAI/minicpm-visual-embedding-v0 ``` ```python from transformers import AutoModel from transformers import AutoTokenizer from PIL import Image import torch device = 'cuda:0' # This function is borrowed from https://huggingface.co/intfloat/e5-mistral-7b-instruct def last_token_pool(last_hidden_states, attention_mask): left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0]) if left_padding: return last_hidden_states[:, -1] else: sequence_lengths = attention_mask.sum(dim=1) - 1 batch_size = last_hidden_states.shape[0] return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths] # Load model, be sure to substitute `model_path` by your model path model_path = '/local/path/to/model' tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model = AutoModel.from_pretrained(model_path, trust_remote_code=True) model.to(device) # Load image to PIL.Image object image_1 = Image.open('/local/path/to/images/memex.png').convert('RGB') image_2 = Image.open('/local/path/to/images/us2020.png').convert('RGB') image_3 = Image.open('/local/path/to/images/hard_negative.png').convert('RGB') # User query query_instruction = 'Represent this query for retrieving relavant document: ' query = 'Who was elected as president of United States in 2020?' query_full = query_instruction + query # Embed image documents with torch.no_grad(): p_outputs = model(text=['', '', ''], image=[image_1, image_2, image_3], tokenizer=tokenizer) p_reps = last_token_pool(p_outputs.last_hidden_state, p_outputs.attention_mask) # Embed text queries with torch.no_grad(): q_outputs = model(text=[query_full], image=[None], tokenizer=tokenizer) # [B, s, d] q_reps = last_token_pool(q_outputs.last_hidden_state, q_outputs.attention_mask) # [B, d] # Calculate similarities scores = torch.matmul(q_reps, p_reps.T) print(scores) # tensor([[0.6506, 4.9630, 3.8614]], device='cuda:0') ``` # Limitations Currently, please ensure that dpi of input images be a high value like `300` dpi, a lower dpi like `100` may cause the model performance degrade. We will augment data and fix this in our latest version.