--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ base_model: - RedRayz/hikari_noob_v-pred_0.5 language: - en tags: - stable-diffusion - sdxl --- # Hikari Noob v-pred 0.6 Civitai model page: https://civitai.com/models/938672 Fine-tuned NoobAI-XL(ν-prediction) and merged SPO LoRA NoobAI-XL(ν-prediction)をファインチューンし、SPOをマージしました。 ## Features/特徴 - Improved stability and quality. - Works with samplers other than Euler. - Good results with only 10 steps (12 steps or more recommended) - Fixed a problem in which the quality of output was significantly degraded when the number of tokens exceeded 76. - The base style is not strong and can be restyled by prompts or LoRAs. - 安定性と品質を改善 - わずか10ステップでよい結果を得られます(ただし12ステップ以上を推奨) - Zero Terminal SNRの代わりにNoise Offsetを使用することでEuler以外のサンプラーでも利用できるようにしました。 - トークン数が76を超えると出力の品質が著しく低下する問題を修正しました。 - 素の画風は強くないので、プロンプトやLoRAによる画風変更ができます。 ## About v0.6 - Better detail rendering and thinner outline, because v0.5 is too flat! - Improved the quality of the landscapes just a little bit - のっぺりしすぎだったのでディティールを増やしてアウトラインを細くしました。 - ほんの少しだけ風景画の品質が改善 ## Requirements / 動作要件 - AUTOMATIC1111 WebUI on `dev` branch / devブランチ上のAUTOMATIC1111 WebUI - **Latest version** of ComfyUI / **最新版**のComfyUI - **Latest version** of Forge or reForge / **最新版**のForgeまたはreForge ### Instruction for AUTOMATIC1111 / AUTOMATIC1111の導入手順 1. Switch branch to `dev` (Run this command in the root directory of the webui: `git checkout -b dev origin/dev` or use Github Desktop) 2. Use the model as usual! (日本語) 1. `dev`ブランチに切り替えます(次のコマンドをwebui直下で実行します: `git checkout -b dev origin/dev` またはGithub Desktopを使う) 2. 通常通りモデルを使用します。 ## Prompt Guidelines / プロンプト記法 Almost same as the base model/ベースモデルとおおむね同じ To improve the quality of background, add `simple background, transparent background` to Negative Prompt. ## Recommended Prompt / 推奨プロンプト Positive: None/無し(Works good without `masterpiece, best quality` / `masterpiece, best quality`無しでおk) Negative: `worst quality, low quality, bad quality, lowres, jpeg artifacts, unfinished, photoshop \(medium\), abstract` or empty(または無し) ## Recommended Settings / 推奨設定 Steps: 10-24 Sampler: DPM++ 2M(dpmpp_2m) Scheduler: Simple Guidance Scale: 3.5-7 ### Hires.fix Hires upscaler: 4x-UltraSharp or Latent(nearest-exact) Denoising strength: 0.4-0.5(0.65-0.7 for latent) ## Merge recipe(Weighted sum) - Stage 1: Finetune Hikari Noob v-pred 0.5 and merge(see below) *A,B: Hikari Noob v-pred 0.5 based custom checkpoint - v0.5(NoSPO) * 0.75 + A * 0.25 = tmp1 - tmp0 * 0.75 + B * 0.25 = tmp2 - tmp2 + SPO LoRA * 1 + sdxl-flat * -0.25 + sdxl-boldline * -1 = tmp3 - Adjust tmp3(0.2,0.2,0.2,0.1,0,0,0,0) = Result ## Training scripts: [sd-scripts](https://github.com/kohya-ss/sd-scripts) ## Notice This model is licensed under [Fair AI Public License 1.0-SD](https://freedevproject.org/faipl-1.0-sd/) If you make modify this model, you must share both your changes and the original license. You are prohibited from monetizing any close-sourced fine-tuned / merged model, which disallows the public from accessing the model's source code / weights and its usages.