--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ base_model: - Laxhar/sdxl_noob language: - en tags: - stable-diffusion - sdxl --- # Hikari Noob v-pred 0.5 ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/630e2d981ef92d4e37a1694e/b9tyKyu2MwbQTQpuqAg2c.jpeg) Civitai model page: https://civitai.com/models/938672 Fine-tuned NoobAI-XL(v-prediction) and merged SPO LoRA NoobAI-XL(v-prediction)をファインチューンし、SPOをマージしました。 日本語での導入手順はページ下部にあります。 ## Features/特徴 - Improved stability and quality. - Works with samplers other than Euler. - Good results with only 10 steps (12 steps or more recommended) - Fixed a problem in which the quality of output was significantly degraded when the number of tokens exceeded 76. - The base style is not strong and can be restyled by prompts or LoRAs. - 安定性と品質を改善 - わずか10ステップでよい結果を得られます(ただし12ステップ以上を推奨) - Zero Terminal SNRの代わりにNoise Offsetを使用することでEuler以外のサンプラーでも利用できるようにしました。 - トークン数が76を超えると出力の品質が著しく低下する問題を修正しました。 - 素の画風は強くないので、プロンプトやLoRAによる画風変更ができます。 ## Requirements / 動作要件 - AUTOMATIC1111 WebUI on `dev` branch / devブランチ上のAUTOMATIC1111 WebUI - Latest version of ComfyUI / 最新版のComfyUI - ReForge on `dev_upstream_experimental` branch / `dev_upstream_experimental`ブランチ上のreForge ### Instruction for AUTOMATIC1111 1. Download the model 2. Switch branch to `dev` 3. Load the model ### Instruction for reForge 1. Download the model 2. Switch branch to `dev_upstream_experimental` 3. Find “Advanced Model Sampling for Forge” at the bottom of the page 4. Enable “Enable Advanced Model Sampling” 5. Select `v_prediction` in Discrete Sampling Type ### Example Workflow for ComfyUI / ComfyUIサンプルワークフロー Download it from [here](https://files.catbox.moe/83e2wl.json) ## Prompt Guidelines / プロンプト記法 Almost same as the base model/ベースモデルとおおむね同じ To improve the quality of background, add `simple background, transparent background` to Negative Prompt. ## Recommended Prompt / 推奨プロンプト Positive: None/無し(Works good without `masterpiece, best quality` / `masterpiece, best quality`無しでおk) Negative: `worst quality, low quality, bad quality, lowres, jpeg artifacts, unfinished, photoshop \(medium\), abstract` or empty(または無し) ## Recommended Settings / 推奨設定 Steps: 10-24 Sampler: DPM++ 2M(dpmpp_2m) Scheduler: Simple Guidance Scale: 3.5-7 ### Hires.fix Hires upscaler: 4x-UltraSharp or Latent(nearest-exact) Denoising strength: 0.4-0.5(0.65-0.7 for latent) ## Merge recipe(Weighted sum) I made 6 Illustrious-based models and merged them. - Stage 0: finetunes v-pred test model with AI-generated images - Stage 1: finetunes stage 0 model with 300 scenery images from Gelbooru - Stage 2: Finetune and merge(see below) *A-F,sd15: finetuned stage1(ReLoRA) - A * 0.6 + B * 0.4 = tmp1 - tmp1 * 0.6 + C * 0.4 = tmp2 - tmp2 * 0.7 + F * 0.3 = tmp3 - tmp3 * 0.7 + E * 0.3 = tmp4 - tmp4 * 0.5 + D * 0.5 = tmp5 - tmp5 * 0.65 + sd15 * 0.35 = tmp6 - tmp6 + SPO LoRA = Result ## Training scripts: [sd-scripts](https://github.com/kohya-ss/sd-scripts) ## Notice This model is licensed under [Fair AI Public License 1.0-SD](https://freedevproject.org/faipl-1.0-sd/) If you make modify this model, you must share both your changes and the original license. You are prohibited from monetizing any close-sourced fine-tuned / merged model, which disallows the public from accessing the model's source code / weights and its usages. ### AUTOMATIC1111の導入手順 1. モデルをダウンロードする。 2. devブランチに切り替える(ブランチの切り替えかたは各自調べてください)。 3. モデルを読み込む。 ### ReForgeの導入手順 1. `dev_upstream_experimental`ブランチに切り替える 2. モデルをダウンロードする。 3. WebUIのページ下部から“Advanced Model Sampling for Forge”を見つける 4. “Enable Advanced Model Sampling”を有効にする 5. Discrete Sampling Typeを`v_prediction`にする