--- license: mit base_model: SCUT-DLVCLab/lilt-roberta-en-base tags: - generated_from_trainer model-index: - name: lilt-en-funsd results: [] --- # lilt-en-funsd This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9790 - Answer: {'precision': 0.44588344125809437, 'recall': 0.5899632802937577, 'f1': 0.5079030558482612, 'number': 817} - Header: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} - Question: {'precision': 0.6358296622613803, 'recall': 0.8040854224698236, 'f1': 0.7101271012710128, 'number': 1077} - Overall Precision: 0.5484 - Overall Recall: 0.6696 - Overall F1: 0.6030 - Overall Accuracy: 0.6457 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 25 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0