---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen2.5-0.5B-Instruct
tags:
- generated_from_trainer
- axolotl
language:
- it
- en
pipeline_tag: text-generation
datasets:
- ReDiX/everyday-conversations-ita
- ReDiX/dataforge-cleaned
---
# Qwen2.5-0.5B-Instruct-ITA
This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) on the [ReDiX/DataForge](https://huggingface.co/datasets/ReDiX/DataForge) dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4100
## Model description
This model is an example of finetuning a sLLM. Italian eval improved and the model learned as espected from the training data
## Intended uses & limitations
More information needed
## Training and evaluation data
| Tasks |Version|Filter|n-shot| Metric | |Value | |Stderr|
|------------|------:|------|-----:|--------|---|-----:|---|-----:|
|arc_it | 2|none | 0|acc |↑ |0.2378|± |0.0125|
| | |none | 0|acc_norm|↑ |0.2823|± |0.0132|
|hellaswag_it| 1|none | 0|acc |↑ |0.3163|± |0.0049|
| | |none | 0|acc_norm|↑ |0.3800|± |0.0051|
|m_mmlu_it | 0|none | 5|acc |↑ |0.381 |± |0.0042|
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2
[](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.5.0`
```yaml
base_model: Qwen/Qwen2.5-0.5B-Instruct
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: ./dataforge
type: chat_template
field_messages: conversations
message_field_role: from
message_field_content: value
# chat_template: chatml
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./outputs/qwen05B
unfrozen_parameters:
- ^lm_head.weight$
- ^model.embed_tokens.weight$
# mlp.down_proj layers
- model.layers.0.mlp.down_proj
- model.layers.23.mlp.down_proj
- model.layers.1.mlp.down_proj
- model.layers.16.mlp.down_proj
- model.layers.4.mlp.down_proj
- model.layers.17.mlp.down_proj
# mlp.gate_proj layers
- model.layers.0.mlp.gate_proj
- model.layers.1.mlp.gate_proj
- model.layers.2.mlp.gate_proj
- model.layers.3.mlp.gate_proj
- model.layers.4.mlp.gate_proj
- model.layers.7.mlp.gate_proj
# mlp.up_proj layers
- model.layers.1.mlp.up_proj
- model.layers.0.mlp.up_proj
- model.layers.3.mlp.up_proj
- model.layers.4.mlp.up_proj
- model.layers.7.mlp.up_proj
- model.layers.9.mlp.up_proj
# self_attn.k_proj layers
- model.layers.18.self_attn.k_proj
- model.layers.7.self_attn.k_proj
- model.layers.19.self_attn.k_proj
- model.layers.2.self_attn.k_proj
- model.layers.6.self_attn.k_proj
- model.layers.9.self_attn.k_proj
# self_attn.o_proj layers
- model.layers.16.self_attn.o_proj
- model.layers.19.self_attn.o_proj
- model.layers.0.self_attn.o_proj
- model.layers.20.self_attn.o_proj
- model.layers.4.self_attn.o_proj
- model.layers.3.self_attn.o_proj
# self_attn.q_proj layers
- model.layers.13.self_attn.q_proj
- model.layers.16.self_attn.q_proj
- model.layers.21.self_attn.q_proj
- model.layers.11.self_attn.q_proj
- model.layers.15.self_attn.q_proj
- model.layers.6.self_attn.q_proj
# self_attn.v_proj layers
- model.layers.2.self_attn.v_proj
- model.layers.3.self_attn.v_proj
- model.layers.4.self_attn.v_proj
- model.layers.5.self_attn.v_proj
- model.layers.7.self_attn.v_proj
- model.layers.8.self_attn.v_proj
sequence_len: 4096
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
wandb_project: axolotl
wandb_entity:
wandb_watch:
wandb_name: qwen2.5-0.5B
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 4
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 1.0e-04
train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 5
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: "<|im_end|>"
eos_token: "<|im_end|>"
```
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0013 | 1 | 1.7855 |
| 1.2567 | 0.2504 | 194 | 1.5639 |
| 1.2551 | 0.5008 | 388 | 1.4980 |
| 1.1845 | 0.7512 | 582 | 1.4501 |
| 1.3178 | 1.0019 | 776 | 1.4252 |
| 1.06 | 1.2523 | 970 | 1.4187 |
| 1.0697 | 1.5027 | 1164 | 1.4116 |
| 1.0362 | 1.7531 | 1358 | 1.4100 |
### Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3