--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2.5-0.5B-Instruct tags: - generated_from_trainer - axolotl language: - it - en pipeline_tag: text-generation datasets: - ReDiX/everyday-conversations-ita - ReDiX/dataforge-cleaned --- # Qwen2.5-0.5B-Instruct-ITA This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) on the [ReDiX/DataForge](https://huggingface.co/datasets/ReDiX/DataForge) dataset. It achieves the following results on the evaluation set: - Loss: 1.4100 ## Model description This model is an example of finetuning a sLLM. Italian eval improved and the model learned as espected from the training data ## Intended uses & limitations More information needed ## Training and evaluation data | Tasks |Version|Filter|n-shot| Metric | |Value | |Stderr| |------------|------:|------|-----:|--------|---|-----:|---|-----:| |arc_it | 2|none | 0|acc |↑ |0.2378|± |0.0125| | | |none | 0|acc_norm|↑ |0.2823|± |0.0132| |hellaswag_it| 1|none | 0|acc |↑ |0.3163|± |0.0049| | | |none | 0|acc_norm|↑ |0.3800|± |0.0051| |m_mmlu_it | 0|none | 5|acc |↑ |0.381 |± |0.0042| ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 2 [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.5.0` ```yaml base_model: Qwen/Qwen2.5-0.5B-Instruct load_in_8bit: false load_in_4bit: false strict: false datasets: - path: ./dataforge type: chat_template field_messages: conversations message_field_role: from message_field_content: value # chat_template: chatml dataset_prepared_path: last_run_prepared val_set_size: 0.1 output_dir: ./outputs/qwen05B unfrozen_parameters: - ^lm_head.weight$ - ^model.embed_tokens.weight$ # mlp.down_proj layers - model.layers.0.mlp.down_proj - model.layers.23.mlp.down_proj - model.layers.1.mlp.down_proj - model.layers.16.mlp.down_proj - model.layers.4.mlp.down_proj - model.layers.17.mlp.down_proj # mlp.gate_proj layers - model.layers.0.mlp.gate_proj - model.layers.1.mlp.gate_proj - model.layers.2.mlp.gate_proj - model.layers.3.mlp.gate_proj - model.layers.4.mlp.gate_proj - model.layers.7.mlp.gate_proj # mlp.up_proj layers - model.layers.1.mlp.up_proj - model.layers.0.mlp.up_proj - model.layers.3.mlp.up_proj - model.layers.4.mlp.up_proj - model.layers.7.mlp.up_proj - model.layers.9.mlp.up_proj # self_attn.k_proj layers - model.layers.18.self_attn.k_proj - model.layers.7.self_attn.k_proj - model.layers.19.self_attn.k_proj - model.layers.2.self_attn.k_proj - model.layers.6.self_attn.k_proj - model.layers.9.self_attn.k_proj # self_attn.o_proj layers - model.layers.16.self_attn.o_proj - model.layers.19.self_attn.o_proj - model.layers.0.self_attn.o_proj - model.layers.20.self_attn.o_proj - model.layers.4.self_attn.o_proj - model.layers.3.self_attn.o_proj # self_attn.q_proj layers - model.layers.13.self_attn.q_proj - model.layers.16.self_attn.q_proj - model.layers.21.self_attn.q_proj - model.layers.11.self_attn.q_proj - model.layers.15.self_attn.q_proj - model.layers.6.self_attn.q_proj # self_attn.v_proj layers - model.layers.2.self_attn.v_proj - model.layers.3.self_attn.v_proj - model.layers.4.self_attn.v_proj - model.layers.5.self_attn.v_proj - model.layers.7.self_attn.v_proj - model.layers.8.self_attn.v_proj sequence_len: 4096 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true wandb_project: axolotl wandb_entity: wandb_watch: wandb_name: qwen2.5-0.5B wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 4 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 1.0e-04 train_on_inputs: false group_by_length: false bf16: true fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 5 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: "<|im_end|>" eos_token: "<|im_end|>" ```

### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0013 | 1 | 1.7855 | | 1.2567 | 0.2504 | 194 | 1.5639 | | 1.2551 | 0.5008 | 388 | 1.4980 | | 1.1845 | 0.7512 | 582 | 1.4501 | | 1.3178 | 1.0019 | 776 | 1.4252 | | 1.06 | 1.2523 | 970 | 1.4187 | | 1.0697 | 1.5027 | 1164 | 1.4116 | | 1.0362 | 1.7531 | 1358 | 1.4100 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3