RayKau commited on
Commit
b42375b
·
1 Parent(s): 1b6a21c

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 235.08 +/- 31.90
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f411eb03ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f411eb03d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f411eb03dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f411eb03e50>", "_build": "<function ActorCriticPolicy._build at 0x7f411eb03ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f411eb03f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f411ea8a040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f411ea8a0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f411ea8a160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f411ea8a1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f411ea8a280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f411eb02450>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671533122592793787, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJPagr4MMbQ/YQkQv7qp2r6fZIO+586hvgAAAAAAAAAAPdGAPhTuFr3t0AC7UrOtOep2g74Cli46AACAPwAAgD+gMVs+WUwdPlXIKb51WUW+21wSvebDaj0AAAAAAAAAAIB6Rz2k2kE8wtBNPaNc2L2xCgi9TvxpvQAAAAAAAAAAzaznO5xzYby3Eo281v2XPFO/vb0qk3Y9AACAPwAAgD8Avzc99B2HP376Bj5aCLe+OOMbPdC94D0AAAAAAAAAAM1Hgz7IZto97j4pPO8vc77Eoaq8yBRuvQAAAAAAAAAA2tvgPVxvOboSCGY5deVSNJ2UB7sfYYi4AAAAAAAAgD9zoUY+u0qIvEsvm7pCfMI436novVSLvzkAAIA/AACAP+bfZj5IjeG8rV5QOxEAuLmiAki+elSOugAAgD8AAIA/s5p3PUOUOz+gNL487kaWvl6PSzwyl/+8AAAAAAAAAABg0Ue+cuOTP6imdr5dvbq+d26Xvo36ZDwAAAAAAAAAAABJkj2ra00/WBHROrTErL6vS7k8gPievQAAAAAAAAAATbwcPRADiz7r2dY9Ep6Fvg5jAzp1XFC9AAAAAAAAAAAtYDu+dteSP9Zgs76wKcm+XtiWvl7dyL0AAAAAAAAAAKAzDz6BmYM/9pWnPdFy9L4lHus91rSNPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITKjg8AIYbkCUhpRSlIwBbJRNKwGMAXSUR0CUxbC9ytFKdX2UKGgGaAloD0MIweEFESkJckCUhpRSlGgVTaABaBZHQJTFw7/4qPR1fZQoaAZoCWgPQwg1RuuoqhtwQJSGlFKUaBVNNgFoFkdAlMa4XoC+13V9lChoBmgJaA9DCHPYfcfwrXFAlIaUUpRoFU26AWgWR0CUxvtf5ULldX2UKGgGaAloD0MIdXedDfk3cUCUhpRSlGgVTVIBaBZHQJTHZZ8rqdJ1fZQoaAZoCWgPQwj3ArNCEcRrQJSGlFKUaBVNIQFoFkdAlMnZrHlwLnV9lChoBmgJaA9DCOsAiLs6y3BAlIaUUpRoFU0mAWgWR0CUyqQwblzVdX2UKGgGaAloD0MIyNCxg0pSQECUhpRSlGgVS9FoFkdAlMuTT4L1EnV9lChoBmgJaA9DCN0LzAoF+HFAlIaUUpRoFU24AWgWR0CUy/8hcJMQdX2UKGgGaAloD0MIMV7zqs4OMUCUhpRSlGgVS/loFkdAlMwwood+5XV9lChoBmgJaA9DCPIolfCEv3BAlIaUUpRoFU1QAmgWR0CUzVpsGgSOdX2UKGgGaAloD0MInGotzAJ7cUCUhpRSlGgVTUIBaBZHQJTOtSuQp4N1fZQoaAZoCWgPQwijsIuiB0pHQJSGlFKUaBVL4WgWR0CUz39nbqQjdX2UKGgGaAloD0MI2UElrqMNcECUhpRSlGgVTVIBaBZHQJTPqNPxhDx1fZQoaAZoCWgPQwj0FaQZSxtwQJSGlFKUaBVNGwFoFkdAlNC95D7ZWnV9lChoBmgJaA9DCKW/l8KDFWtAlIaUUpRoFU0jAWgWR0CU0R9gF5fMdX2UKGgGaAloD0MINEksKXeQcUCUhpRSlGgVTZQBaBZHQJTR5xdY4hl1fZQoaAZoCWgPQwjRyyiWWyNxQJSGlFKUaBVNjAFoFkdAlOVJYkmhNHV9lChoBmgJaA9DCF3AywwbVXFAlIaUUpRoFU1CAWgWR0CU5Y/wRXfZdX2UKGgGaAloD0MIYqHWNG9WcECUhpRSlGgVTToBaBZHQJTlsMnZ00Z1fZQoaAZoCWgPQwii7Zi6qyJyQJSGlFKUaBVNIwFoFkdAlOfX3Hq/unV9lChoBmgJaA9DCLfUQV5PXHFAlIaUUpRoFU04AWgWR0CU5/S8an76dX2UKGgGaAloD0MIf/rPml8SckCUhpRSlGgVTSYBaBZHQJTou/k/8l51fZQoaAZoCWgPQwjaccPvpntvQJSGlFKUaBVNKwFoFkdAlOlCvHLidnV9lChoBmgJaA9DCBb4im49DXBAlIaUUpRoFU0+AWgWR0CU6iEcbR4RdX2UKGgGaAloD0MIiJ6USY0ebkCUhpRSlGgVTSwBaBZHQJTqksZpBX11fZQoaAZoCWgPQwjFVzuKs9hwQJSGlFKUaBVNIwFoFkdAlOxsHSnccnV9lChoBmgJaA9DCDvFqkHYYnNAlIaUUpRoFU0tAWgWR0CU7KkNFz+4dX2UKGgGaAloD0MIgBDJkKPdckCUhpRSlGgVTVMBaBZHQJTtVVmz0H11fZQoaAZoCWgPQwhDAHDsmTVwQJSGlFKUaBVNKAFoFkdAlO2gCGN70HV9lChoBmgJaA9DCDCd1m2QhHFAlIaUUpRoFU0iAWgWR0CU7b9FF2FGdX2UKGgGaAloD0MIDamieJXFbkCUhpRSlGgVTRoBaBZHQJTuHTH80k51fZQoaAZoCWgPQwhHOC140a9aQJSGlFKUaBVN6ANoFkdAlPCS+10DEHV9lChoBmgJaA9DCN6ul6YIVDfAlIaUUpRoFUvlaBZHQJTwxEXtSht1fZQoaAZoCWgPQwjYKsHi8HpwQJSGlFKUaBVNEgFoFkdAlPF5YDDCQHV9lChoBmgJaA9DCFWhgVj2y3BAlIaUUpRoFU1kAWgWR0CU8guoP07KdX2UKGgGaAloD0MInKc65CaHckCUhpRSlGgVTZQBaBZHQJTzRix3V091fZQoaAZoCWgPQwjHaB1VzS5xQJSGlFKUaBVNXQFoFkdAlPWVjd56dHV9lChoBmgJaA9DCJxvRPcsTmxAlIaUUpRoFU0ZAWgWR0CU9loaUA1fdX2UKGgGaAloD0MIFCaMZmVhcECUhpRSlGgVTTIBaBZHQJT53VDrqt51fZQoaAZoCWgPQwi/ZU6XRSlvQJSGlFKUaBVNTwFoFkdAlPqIh6jWTXV9lChoBmgJaA9DCHAmpgsx7nBAlIaUUpRoFU1jAWgWR0CU+wvfTCtSdX2UKGgGaAloD0MIX5oiwOnha0CUhpRSlGgVTV4BaBZHQJT7T8rI5o51fZQoaAZoCWgPQwg7OUNxxxsPwJSGlFKUaBVL7WgWR0CU/AoVEd/8dX2UKGgGaAloD0MIoWez6jPEcECUhpRSlGgVTTABaBZHQJT83YZl4C91fZQoaAZoCWgPQwhtWFNZlL5uQJSGlFKUaBVNQwFoFkdAlP3QDV6NVHV9lChoBmgJaA9DCHbDtkUZNW5AlIaUUpRoFU3lAWgWR0CU/2YkVvdedX2UKGgGaAloD0MIqWkX08zNcECUhpRSlGgVTU8CaBZHQJUBXfP5YYB1fZQoaAZoCWgPQwh+/KVF/XZxQJSGlFKUaBVNiwFoFkdAlQGK3AmAsnV9lChoBmgJaA9DCNjYJao3iXJAlIaUUpRoFU0oAWgWR0CVAgMotthvdX2UKGgGaAloD0MIRWPt7+z/bECUhpRSlGgVTRIBaBZHQJUFwfzSThZ1fZQoaAZoCWgPQwjW4lMAzI9wQJSGlFKUaBVNjgFoFkdAlQb0gKWszXV9lChoBmgJaA9DCAjm6PG7nHBAlIaUUpRoFU1HAWgWR0CVBxFlCkXUdX2UKGgGaAloD0MIxoUDIVmjbUCUhpRSlGgVTVABaBZHQJUI3vhIe5p1fZQoaAZoCWgPQwjtYwW/zS1xQJSGlFKUaBVNeQFoFkdAlQnYlyBClnV9lChoBmgJaA9DCEfLgR7qF3BAlIaUUpRoFU05A2gWR0CVCrMir1dxdX2UKGgGaAloD0MImj+mtalMcECUhpRSlGgVTWwBaBZHQJUL5ovi97F1fZQoaAZoCWgPQwgYITzaOIFlQJSGlFKUaBVN6ANoFkdAlR7mfkFOf3V9lChoBmgJaA9DCOC6YkZ4h29AlIaUUpRoFU0MAWgWR0CVHxhy8zyjdX2UKGgGaAloD0MIEw69xUPQcUCUhpRSlGgVTTMBaBZHQJUhGenQ6ZJ1fZQoaAZoCWgPQwj1Lt6PW0hjQJSGlFKUaBVN6ANoFkdAlSFrCWNWEXV9lChoBmgJaA9DCBdi9UcYfE1AlIaUUpRoFU0NAWgWR0CVI4AP/aQFdX2UKGgGaAloD0MI3nNgOYITcECUhpRSlGgVTQ8CaBZHQJUj8kKNQ0p1fZQoaAZoCWgPQwh/+s+aH/8QQJSGlFKUaBVL1GgWR0CVI/77Kq4pdX2UKGgGaAloD0MImIdM+RAlb0CUhpRSlGgVTSIBaBZHQJUlfpfQa751fZQoaAZoCWgPQwhCtFa0OeZvQJSGlFKUaBVNJwFoFkdAlSWaNQ0oB3V9lChoBmgJaA9DCJd1/1iIDs8/lIaUUpRoFU0AAWgWR0CVKHt5D7ZWdX2UKGgGaAloD0MIRpT2Bt9NcUCUhpRSlGgVTSYBaBZHQJUo4RGtp251fZQoaAZoCWgPQwhS19r71ERxQJSGlFKUaBVNTAFoFkdAlSmpeNT99HV9lChoBmgJaA9DCOvDeqOWy3BAlIaUUpRoFU09AWgWR0CVK+O+ZgG9dX2UKGgGaAloD0MI81fIXFmOcUCUhpRSlGgVTUsBaBZHQJUsSzLOiWV1fZQoaAZoCWgPQwjjGMkeIcdtQJSGlFKUaBVNEgFoFkdAlSygWN3np3V9lChoBmgJaA9DCPCnxku3q25AlIaUUpRoFU1AAWgWR0CVLj8NQTEjdX2UKGgGaAloD0MIc77Ye/FccECUhpRSlGgVTeoCaBZHQJUuuSgXdj51fZQoaAZoCWgPQwg51VqYhZBPQJSGlFKUaBVN6ANoFkdAlS8RwhnrZHV9lChoBmgJaA9DCHbEIRtItGxAlIaUUpRoFU0UAWgWR0CVLzmpEQXidX2UKGgGaAloD0MIFcrC11cBckCUhpRSlGgVTSwBaBZHQJUwDpD/lyR1fZQoaAZoCWgPQwil+PiE7A5uQJSGlFKUaBVNTQFoFkdAlTKfKhcqv3V9lChoBmgJaA9DCO//44QJL21AlIaUUpRoFU0UAWgWR0CVM1+nqFAWdX2UKGgGaAloD0MIHLEWn4JscUCUhpRSlGgVTSUBaBZHQJU0ap5u63B1fZQoaAZoCWgPQwiQ3QVKiiVyQJSGlFKUaBVNAwFoFkdAlTZk5MlC1XV9lChoBmgJaA9DCHPbvkf9om1AlIaUUpRoFU1VAWgWR0CVOalGwzLwdX2UKGgGaAloD0MIKNNocrGjbECUhpRSlGgVTUkBaBZHQJU55f/m1Y11fZQoaAZoCWgPQwjuXYO+tFJwQJSGlFKUaBVNFwFoFkdAlTo3LzPKMnV9lChoBmgJaA9DCB3Iemr1XnFAlIaUUpRoFU0rAWgWR0CVOj6CUX54dX2UKGgGaAloD0MIy5wui4m6Y0CUhpRSlGgVTegDaBZHQJU6fwuuiex1fZQoaAZoCWgPQwiBBMWPMdJuQJSGlFKUaBVNJwFoFkdAlTsH6dlNDnV9lChoBmgJaA9DCDArFOl+yV5AlIaUUpRoFU3oA2gWR0CVPHCKJl8PdX2UKGgGaAloD0MIMXpuoSsJcECUhpRSlGgVTWMBaBZHQJU82lxffGd1fZQoaAZoCWgPQwjZzCGpBehvQJSGlFKUaBVNVQFoFkdAlT2oubqhUXV9lChoBmgJaA9DCK8hOC7jB2tAlIaUUpRoFU0WAmgWR0CVPvRyOq//dX2UKGgGaAloD0MIlBeZgN8vckCUhpRSlGgVTVgBaBZHQJVAYG+sYEZ1fZQoaAZoCWgPQwhcPLznALxyQJSGlFKUaBVNNgFoFkdAlUDZWq94/3V9lChoBmgJaA9DCE/ltKfk0khAlIaUUpRoFUvmaBZHQJVCpg/keZJ1fZQoaAZoCWgPQwjnc+52PRpvQJSGlFKUaBVNDQFoFkdAlUQUfcN6PnV9lChoBmgJaA9DCJ/J/nmaYmxAlIaUUpRoFU0OAWgWR0CVRLNQCSzPdX2UKGgGaAloD0MIrrfNVMjZcUCUhpRSlGgVTREBaBZHQJVFGNPxhDx1fZQoaAZoCWgPQwjooiHjEbNxQJSGlFKUaBVNDgFoFkdAlUWJXEIgNnV9lChoBmgJaA9DCFkV4SajmjJAlIaUUpRoFUvNaBZHQJVFrtAs0551fZQoaAZoCWgPQwhETfT56GBwQJSGlFKUaBVNKQFoFkdAlUXHmV7hN3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:936b9c85060c6af5df63161802cc4548a838d5d9887285d82e6fcdf05c6408da
3
+ size 147210
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f411eb03ca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f411eb03d30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f411eb03dc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f411eb03e50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f411eb03ee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f411eb03f70>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f411ea8a040>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f411ea8a0d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f411ea8a160>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f411ea8a1f0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f411ea8a280>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f411eb02450>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671533122592793787,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJPagr4MMbQ/YQkQv7qp2r6fZIO+586hvgAAAAAAAAAAPdGAPhTuFr3t0AC7UrOtOep2g74Cli46AACAPwAAgD+gMVs+WUwdPlXIKb51WUW+21wSvebDaj0AAAAAAAAAAIB6Rz2k2kE8wtBNPaNc2L2xCgi9TvxpvQAAAAAAAAAAzaznO5xzYby3Eo281v2XPFO/vb0qk3Y9AACAPwAAgD8Avzc99B2HP376Bj5aCLe+OOMbPdC94D0AAAAAAAAAAM1Hgz7IZto97j4pPO8vc77Eoaq8yBRuvQAAAAAAAAAA2tvgPVxvOboSCGY5deVSNJ2UB7sfYYi4AAAAAAAAgD9zoUY+u0qIvEsvm7pCfMI436novVSLvzkAAIA/AACAP+bfZj5IjeG8rV5QOxEAuLmiAki+elSOugAAgD8AAIA/s5p3PUOUOz+gNL487kaWvl6PSzwyl/+8AAAAAAAAAABg0Ue+cuOTP6imdr5dvbq+d26Xvo36ZDwAAAAAAAAAAABJkj2ra00/WBHROrTErL6vS7k8gPievQAAAAAAAAAATbwcPRADiz7r2dY9Ep6Fvg5jAzp1XFC9AAAAAAAAAAAtYDu+dteSP9Zgs76wKcm+XtiWvl7dyL0AAAAAAAAAAKAzDz6BmYM/9pWnPdFy9L4lHus91rSNPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITKjg8AIYbkCUhpRSlIwBbJRNKwGMAXSUR0CUxbC9ytFKdX2UKGgGaAloD0MIweEFESkJckCUhpRSlGgVTaABaBZHQJTFw7/4qPR1fZQoaAZoCWgPQwg1RuuoqhtwQJSGlFKUaBVNNgFoFkdAlMa4XoC+13V9lChoBmgJaA9DCHPYfcfwrXFAlIaUUpRoFU26AWgWR0CUxvtf5ULldX2UKGgGaAloD0MIdXedDfk3cUCUhpRSlGgVTVIBaBZHQJTHZZ8rqdJ1fZQoaAZoCWgPQwj3ArNCEcRrQJSGlFKUaBVNIQFoFkdAlMnZrHlwLnV9lChoBmgJaA9DCOsAiLs6y3BAlIaUUpRoFU0mAWgWR0CUyqQwblzVdX2UKGgGaAloD0MIyNCxg0pSQECUhpRSlGgVS9FoFkdAlMuTT4L1EnV9lChoBmgJaA9DCN0LzAoF+HFAlIaUUpRoFU24AWgWR0CUy/8hcJMQdX2UKGgGaAloD0MIMV7zqs4OMUCUhpRSlGgVS/loFkdAlMwwood+5XV9lChoBmgJaA9DCPIolfCEv3BAlIaUUpRoFU1QAmgWR0CUzVpsGgSOdX2UKGgGaAloD0MInGotzAJ7cUCUhpRSlGgVTUIBaBZHQJTOtSuQp4N1fZQoaAZoCWgPQwijsIuiB0pHQJSGlFKUaBVL4WgWR0CUz39nbqQjdX2UKGgGaAloD0MI2UElrqMNcECUhpRSlGgVTVIBaBZHQJTPqNPxhDx1fZQoaAZoCWgPQwj0FaQZSxtwQJSGlFKUaBVNGwFoFkdAlNC95D7ZWnV9lChoBmgJaA9DCKW/l8KDFWtAlIaUUpRoFU0jAWgWR0CU0R9gF5fMdX2UKGgGaAloD0MINEksKXeQcUCUhpRSlGgVTZQBaBZHQJTR5xdY4hl1fZQoaAZoCWgPQwjRyyiWWyNxQJSGlFKUaBVNjAFoFkdAlOVJYkmhNHV9lChoBmgJaA9DCF3AywwbVXFAlIaUUpRoFU1CAWgWR0CU5Y/wRXfZdX2UKGgGaAloD0MIYqHWNG9WcECUhpRSlGgVTToBaBZHQJTlsMnZ00Z1fZQoaAZoCWgPQwii7Zi6qyJyQJSGlFKUaBVNIwFoFkdAlOfX3Hq/unV9lChoBmgJaA9DCLfUQV5PXHFAlIaUUpRoFU04AWgWR0CU5/S8an76dX2UKGgGaAloD0MIf/rPml8SckCUhpRSlGgVTSYBaBZHQJTou/k/8l51fZQoaAZoCWgPQwjaccPvpntvQJSGlFKUaBVNKwFoFkdAlOlCvHLidnV9lChoBmgJaA9DCBb4im49DXBAlIaUUpRoFU0+AWgWR0CU6iEcbR4RdX2UKGgGaAloD0MIiJ6USY0ebkCUhpRSlGgVTSwBaBZHQJTqksZpBX11fZQoaAZoCWgPQwjFVzuKs9hwQJSGlFKUaBVNIwFoFkdAlOxsHSnccnV9lChoBmgJaA9DCDvFqkHYYnNAlIaUUpRoFU0tAWgWR0CU7KkNFz+4dX2UKGgGaAloD0MIgBDJkKPdckCUhpRSlGgVTVMBaBZHQJTtVVmz0H11fZQoaAZoCWgPQwhDAHDsmTVwQJSGlFKUaBVNKAFoFkdAlO2gCGN70HV9lChoBmgJaA9DCDCd1m2QhHFAlIaUUpRoFU0iAWgWR0CU7b9FF2FGdX2UKGgGaAloD0MIDamieJXFbkCUhpRSlGgVTRoBaBZHQJTuHTH80k51fZQoaAZoCWgPQwhHOC140a9aQJSGlFKUaBVN6ANoFkdAlPCS+10DEHV9lChoBmgJaA9DCN6ul6YIVDfAlIaUUpRoFUvlaBZHQJTwxEXtSht1fZQoaAZoCWgPQwjYKsHi8HpwQJSGlFKUaBVNEgFoFkdAlPF5YDDCQHV9lChoBmgJaA9DCFWhgVj2y3BAlIaUUpRoFU1kAWgWR0CU8guoP07KdX2UKGgGaAloD0MInKc65CaHckCUhpRSlGgVTZQBaBZHQJTzRix3V091fZQoaAZoCWgPQwjHaB1VzS5xQJSGlFKUaBVNXQFoFkdAlPWVjd56dHV9lChoBmgJaA9DCJxvRPcsTmxAlIaUUpRoFU0ZAWgWR0CU9loaUA1fdX2UKGgGaAloD0MIFCaMZmVhcECUhpRSlGgVTTIBaBZHQJT53VDrqt51fZQoaAZoCWgPQwi/ZU6XRSlvQJSGlFKUaBVNTwFoFkdAlPqIh6jWTXV9lChoBmgJaA9DCHAmpgsx7nBAlIaUUpRoFU1jAWgWR0CU+wvfTCtSdX2UKGgGaAloD0MIX5oiwOnha0CUhpRSlGgVTV4BaBZHQJT7T8rI5o51fZQoaAZoCWgPQwg7OUNxxxsPwJSGlFKUaBVL7WgWR0CU/AoVEd/8dX2UKGgGaAloD0MIoWez6jPEcECUhpRSlGgVTTABaBZHQJT83YZl4C91fZQoaAZoCWgPQwhtWFNZlL5uQJSGlFKUaBVNQwFoFkdAlP3QDV6NVHV9lChoBmgJaA9DCHbDtkUZNW5AlIaUUpRoFU3lAWgWR0CU/2YkVvdedX2UKGgGaAloD0MIqWkX08zNcECUhpRSlGgVTU8CaBZHQJUBXfP5YYB1fZQoaAZoCWgPQwh+/KVF/XZxQJSGlFKUaBVNiwFoFkdAlQGK3AmAsnV9lChoBmgJaA9DCNjYJao3iXJAlIaUUpRoFU0oAWgWR0CVAgMotthvdX2UKGgGaAloD0MIRWPt7+z/bECUhpRSlGgVTRIBaBZHQJUFwfzSThZ1fZQoaAZoCWgPQwjW4lMAzI9wQJSGlFKUaBVNjgFoFkdAlQb0gKWszXV9lChoBmgJaA9DCAjm6PG7nHBAlIaUUpRoFU1HAWgWR0CVBxFlCkXUdX2UKGgGaAloD0MIxoUDIVmjbUCUhpRSlGgVTVABaBZHQJUI3vhIe5p1fZQoaAZoCWgPQwjtYwW/zS1xQJSGlFKUaBVNeQFoFkdAlQnYlyBClnV9lChoBmgJaA9DCEfLgR7qF3BAlIaUUpRoFU05A2gWR0CVCrMir1dxdX2UKGgGaAloD0MImj+mtalMcECUhpRSlGgVTWwBaBZHQJUL5ovi97F1fZQoaAZoCWgPQwgYITzaOIFlQJSGlFKUaBVN6ANoFkdAlR7mfkFOf3V9lChoBmgJaA9DCOC6YkZ4h29AlIaUUpRoFU0MAWgWR0CVHxhy8zyjdX2UKGgGaAloD0MIEw69xUPQcUCUhpRSlGgVTTMBaBZHQJUhGenQ6ZJ1fZQoaAZoCWgPQwj1Lt6PW0hjQJSGlFKUaBVN6ANoFkdAlSFrCWNWEXV9lChoBmgJaA9DCBdi9UcYfE1AlIaUUpRoFU0NAWgWR0CVI4AP/aQFdX2UKGgGaAloD0MI3nNgOYITcECUhpRSlGgVTQ8CaBZHQJUj8kKNQ0p1fZQoaAZoCWgPQwh/+s+aH/8QQJSGlFKUaBVL1GgWR0CVI/77Kq4pdX2UKGgGaAloD0MImIdM+RAlb0CUhpRSlGgVTSIBaBZHQJUlfpfQa751fZQoaAZoCWgPQwhCtFa0OeZvQJSGlFKUaBVNJwFoFkdAlSWaNQ0oB3V9lChoBmgJaA9DCJd1/1iIDs8/lIaUUpRoFU0AAWgWR0CVKHt5D7ZWdX2UKGgGaAloD0MIRpT2Bt9NcUCUhpRSlGgVTSYBaBZHQJUo4RGtp251fZQoaAZoCWgPQwhS19r71ERxQJSGlFKUaBVNTAFoFkdAlSmpeNT99HV9lChoBmgJaA9DCOvDeqOWy3BAlIaUUpRoFU09AWgWR0CVK+O+ZgG9dX2UKGgGaAloD0MI81fIXFmOcUCUhpRSlGgVTUsBaBZHQJUsSzLOiWV1fZQoaAZoCWgPQwjjGMkeIcdtQJSGlFKUaBVNEgFoFkdAlSygWN3np3V9lChoBmgJaA9DCPCnxku3q25AlIaUUpRoFU1AAWgWR0CVLj8NQTEjdX2UKGgGaAloD0MIc77Ye/FccECUhpRSlGgVTeoCaBZHQJUuuSgXdj51fZQoaAZoCWgPQwg51VqYhZBPQJSGlFKUaBVN6ANoFkdAlS8RwhnrZHV9lChoBmgJaA9DCHbEIRtItGxAlIaUUpRoFU0UAWgWR0CVLzmpEQXidX2UKGgGaAloD0MIFcrC11cBckCUhpRSlGgVTSwBaBZHQJUwDpD/lyR1fZQoaAZoCWgPQwil+PiE7A5uQJSGlFKUaBVNTQFoFkdAlTKfKhcqv3V9lChoBmgJaA9DCO//44QJL21AlIaUUpRoFU0UAWgWR0CVM1+nqFAWdX2UKGgGaAloD0MIHLEWn4JscUCUhpRSlGgVTSUBaBZHQJU0ap5u63B1fZQoaAZoCWgPQwiQ3QVKiiVyQJSGlFKUaBVNAwFoFkdAlTZk5MlC1XV9lChoBmgJaA9DCHPbvkf9om1AlIaUUpRoFU1VAWgWR0CVOalGwzLwdX2UKGgGaAloD0MIKNNocrGjbECUhpRSlGgVTUkBaBZHQJU55f/m1Y11fZQoaAZoCWgPQwjuXYO+tFJwQJSGlFKUaBVNFwFoFkdAlTo3LzPKMnV9lChoBmgJaA9DCB3Iemr1XnFAlIaUUpRoFU0rAWgWR0CVOj6CUX54dX2UKGgGaAloD0MIy5wui4m6Y0CUhpRSlGgVTegDaBZHQJU6fwuuiex1fZQoaAZoCWgPQwiBBMWPMdJuQJSGlFKUaBVNJwFoFkdAlTsH6dlNDnV9lChoBmgJaA9DCDArFOl+yV5AlIaUUpRoFU3oA2gWR0CVPHCKJl8PdX2UKGgGaAloD0MIMXpuoSsJcECUhpRSlGgVTWMBaBZHQJU82lxffGd1fZQoaAZoCWgPQwjZzCGpBehvQJSGlFKUaBVNVQFoFkdAlT2oubqhUXV9lChoBmgJaA9DCK8hOC7jB2tAlIaUUpRoFU0WAmgWR0CVPvRyOq//dX2UKGgGaAloD0MIlBeZgN8vckCUhpRSlGgVTVgBaBZHQJVAYG+sYEZ1fZQoaAZoCWgPQwhcPLznALxyQJSGlFKUaBVNNgFoFkdAlUDZWq94/3V9lChoBmgJaA9DCE/ltKfk0khAlIaUUpRoFUvmaBZHQJVCpg/keZJ1fZQoaAZoCWgPQwjnc+52PRpvQJSGlFKUaBVNDQFoFkdAlUQUfcN6PnV9lChoBmgJaA9DCJ/J/nmaYmxAlIaUUpRoFU0OAWgWR0CVRLNQCSzPdX2UKGgGaAloD0MIrrfNVMjZcUCUhpRSlGgVTREBaBZHQJVFGNPxhDx1fZQoaAZoCWgPQwjooiHjEbNxQJSGlFKUaBVNDgFoFkdAlUWJXEIgNnV9lChoBmgJaA9DCFkV4SajmjJAlIaUUpRoFUvNaBZHQJVFrtAs0551fZQoaAZoCWgPQwhETfT56GBwQJSGlFKUaBVNKQFoFkdAlUXHmV7hN3VlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6281026a071c9b12e477a799d9e1d1ccd7b0218cdeb6a405a4ad7af1e911a83
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97154c07d03ac393bad0dc4e3759871486cbbc1ce5cad5f2cb749ecc13bb59c3
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (204 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 235.07883734541647, "std_reward": 31.895020834427026, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-20T11:14:28.000342"}