--- library_name: transformers base_model: Qwen/Qwen2.5-14B tags: - axolotl - generated_from_trainer model-index: - name: medius-erebus-magnum-14b results: [] --- [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory) # QuantFactory/medius-erebus-magnum-14b-GGUF This is quantized version of [underwoods/medius-erebus-magnum-14b](https://huggingface.co/underwoods/medius-erebus-magnum-14b) created using llama.cpp # Original Model Card [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: /workspace/medius-erebus model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer hub_model_id: magnum-erebus-14b-v1 hub_strategy: "all_checkpoints" push_dataset_to_hub: hf_use_auth_token: true plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: anthracite-core/c2_logs_32k_llama3_qwen2_v1.2 type: sharegpt - path: anthracite-org/kalo-opus-instruct-22k-no-refusal type: sharegpt - path: lodrick-the-lafted/kalo-opus-instruct-3k-filtered type: sharegpt - path: anthracite-org/nopm_claude_writing_fixed type: sharegpt - path: anthracite-org/kalo_opus_misc_240827 type: sharegpt - path: anthracite-org/kalo_misc_part2 type: sharegpt chat_template: chatml shuffle_merged_datasets: true default_system_message: "You are an assistant that responds to the user." dataset_prepared_path: /workspace/data/magnum-14b-data val_set_size: 0.0 output_dir: /workspace/data/magnum-erebus-14b-fft sequence_len: 32768 sample_packing: true pad_to_sequence_len: true adapter: lora_model_dir: lora_r: lora_alpha: lora_dropout: lora_target_linear: lora_fan_in_fan_out: wandb_project: 14b-magnum-fft wandb_entity: wandb_watch: wandb_name: v4-r2-erebus-attempt-1 wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 2 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.000008 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: unsloth early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 40 evals_per_epoch: eval_table_size: eval_max_new_tokens: saves_per_epoch: 2 debug: deepspeed: deepspeed_configs/zero3_bf16.json weight_decay: 0.1 fsdp: fsdp_config: special_tokens: ```

# medius-erebus-magnum ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 16 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 40 - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.45.1 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.20.0