--- language: en license: apache-2.0 tags: - causal-lm - transformers - llama - reflex-ai --- [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory) # QuantFactory/AMD-Llama-350M-Upgraded-GGUF This is quantized version of [reflex-ai/AMD-Llama-350M-Upgraded](https://huggingface.co/reflex-ai/AMD-Llama-350M-Upgraded) created using llama.cpp # Original Model Card # AMD Llama 350M Upgraded ## Model Description The **AMD Llama 350M Upgraded** is a transformer-based causal language model built on the Llama architecture, designed to generate human-like text. This model has been upgraded from the original AMD Llama 135M model to provide enhanced performance with an increased parameter count of 332 million. It is suitable for various natural language processing tasks, including text generation, completion, and conversational applications. ## Model Details - **Model Type**: Causal Language Model - **Architecture**: Llama - **Number of Parameters**: 332 million - **Input Size**: Variable-length input sequences - **Output Size**: Variable-length output sequences ## Usage To use the AMD Llama 350M Upgraded model, you can utilize the `transformers` library. Here’s a sample code snippet to get started: ```python import torch from transformers import LlamaForCausalLM, LlamaTokenizer # Load the tokenizer and model model_name = "reflex-ai/AMD-Llama-350M-Upgraded" tokenizer = LlamaTokenizer.from_pretrained(model_name) model = LlamaForCausalLM.from_pretrained(model_name) # Set the model to evaluation mode model.eval() # Function to generate text def generate_text(prompt, max_length=50): inputs = tokenizer.encode(prompt, return_tensors='pt', padding=True, truncation=True) attention_mask = (inputs != tokenizer.pad_token_id).long() if torch.cuda.is_available(): inputs = inputs.to('cuda') attention_mask = attention_mask.to('cuda') with torch.no_grad(): outputs = model.generate(inputs, attention_mask=attention_mask, max_length=max_length, num_return_sequences=1) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return generated_text # Example usage prompt = "Once upon a time in a land far away," generated_output = generate_text(prompt, max_length=100) print(generated_output)