--- base_model: NousResearch/Meta-Llama-3-8B library_name: peft license: other tags: - generated_from_trainer model-index: - name: outputs/llama3-8b-ht-v1-2 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: NousResearch/Meta-Llama-3-8B model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false datasets: - path: QTeam/htxllama_1 type: alpaca dataset_prepared_path: val_set_size: 0.05 output_dir: ./outputs/llama3-8b-ht-v1-2 sequence_len: 4096 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_modules_to_save: - embed_tokens - lm_head wandb_project: "ft-llama3-8b-v1" wandb_entity: "htxqteam1-htx" wandb_watch: "all" wandb_name: wandb_log_model: "never" gradient_accumulation_steps: 1 micro_batch_size: 2 num_epochs: 10 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention: warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|> ```

# outputs/llama3-8b-ht-v1-2 This model is a fine-tuned version of [NousResearch/Meta-Llama-3-8B](https://huggingface.co/NousResearch/Meta-Llama-3-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5036 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 3 - total_train_batch_size: 6 - total_eval_batch_size: 6 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.1533 | 0.0161 | 1 | 2.1831 | | 1.6416 | 0.2581 | 16 | 1.7333 | | 1.6154 | 0.5161 | 32 | 1.6458 | | 1.5155 | 0.7742 | 48 | 1.5807 | | 1.5359 | 1.0323 | 64 | 1.5371 | | 1.0746 | 1.2581 | 80 | 1.5888 | | 1.0806 | 1.5161 | 96 | 1.5696 | | 1.0348 | 1.7742 | 112 | 1.5536 | | 1.0769 | 2.0323 | 128 | 1.5341 | | 0.6608 | 2.2581 | 144 | 1.6201 | | 0.6918 | 2.5161 | 160 | 1.6185 | | 0.7203 | 2.7742 | 176 | 1.6154 | | 0.7172 | 3.0323 | 192 | 1.6202 | | 0.3914 | 3.2581 | 208 | 1.7162 | | 0.4111 | 3.5161 | 224 | 1.7114 | | 0.4091 | 3.7742 | 240 | 1.7177 | | 0.4103 | 4.0323 | 256 | 1.7191 | | 0.1996 | 4.2581 | 272 | 1.8387 | | 0.1932 | 4.5161 | 288 | 1.8439 | | 0.2185 | 4.7742 | 304 | 1.8510 | | 0.2221 | 5.0323 | 320 | 1.8515 | | 0.0968 | 5.2581 | 336 | 2.0317 | | 0.0937 | 5.5161 | 352 | 2.0138 | | 0.0973 | 5.7742 | 368 | 2.0274 | | 0.083 | 6.0323 | 384 | 2.0257 | | 0.0385 | 6.2581 | 400 | 2.1731 | | 0.0411 | 6.5161 | 416 | 2.2114 | | 0.0446 | 6.7742 | 432 | 2.2080 | | 0.0426 | 7.0323 | 448 | 2.2194 | | 0.0186 | 7.2581 | 464 | 2.4007 | | 0.0186 | 7.5161 | 480 | 2.3837 | | 0.0217 | 7.7742 | 496 | 2.3915 | | 0.0201 | 8.0323 | 512 | 2.3953 | | 0.0137 | 8.2581 | 528 | 2.4732 | | 0.0158 | 8.5161 | 544 | 2.4896 | | 0.0145 | 8.7742 | 560 | 2.4928 | | 0.0145 | 9.0323 | 576 | 2.4964 | | 0.0135 | 9.2581 | 592 | 2.5030 | | 0.0149 | 9.5161 | 608 | 2.5036 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1