--- license: mit datasets: - QizhiPei/BioT5_finetune_dataset language: - en --- ## Example Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("QizhiPei/biot5-base-mol2text", model_max_length=512) model = T5ForConditionalGeneration.from_pretrained('QizhiPei/biot5-base-mol2text') task_definition = 'Definition: You are given a molecule SELFIES. Your job is to generate the molecule description in English that fits the molecule SELFIES.\n\n' selfies_input = '[C][C][Branch1][C][O][C][C][=Branch1][C][=O][C][=Branch1][C][=O][O-1]' task_input = f'Now complete the following example -\nInput: {selfies_input}\nOutput: ' model_input = task_definition + task_input input_ids = tokenizer(model_input, return_tensors="pt").input_ids generation_config = model.generation_config generation_config.max_length = 512 generation_config.num_beams = 1 outputs = model.generate(input_ids, generation_config=generation_config) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## References For more information, please refer to our paper and GitHub repository. Paper: [BioT5: Enriching Cross-modal Integration in Biology with Chemical Knowledge and Natural Language Associations](https://arxiv.org/abs/2310.07276) GitHub: [BioT5](https://github.com/QizhiPei/BioT5) Authors: *Qizhi Pei, Wei Zhang, Jinhua Zhu, Kehan Wu, Kaiyuan Gao, Lijun Wu, Yingce Xia, and Rui Yan*