LLM-Detector: Improving AI-generated Chinese Text Detection with Large Language Models ```python from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.generation import GenerationConfig # Note: The default behavior now has injection attack prevention off. tokenizer = AutoTokenizer.from_pretrained("QiYuan-tech/LLM-Detector-Small-en", trust_remote_code=True) # use bf16 # model = AutoModelForCausalLM.from_pretrained("QiYuan-tech/LLM-Detector-Small-en", device_map="auto", trust_remote_code=True, bf16=True).eval() # use fp16 # model = AutoModelForCausalLM.from_pretrained("QiYuan-tech/LLM-Detector-Small-en", device_map="auto", trust_remote_code=True, fp16=True).eval() # use cpu only # model = AutoModelForCausalLM.from_pretrained("QiYuan-tech/LLM-Detector-Small-en", device_map="cpu", trust_remote_code=True).eval() # use auto mode, automatically select precision based on the device. model = AutoModelForCausalLM.from_pretrained("QiYuan-tech/LLM-Detector-Small-en", device_map="auto", trust_remote_code=True).eval() #model = AutoModelForCausalLM.from_pretrained("QiYuan-tech/LLM-Detector-Small-en", device_map="auto", trust_remote_code=True).cuda() # Specify hyperparameters for generation. But if you use transformers>=4.32.0, there is no need to do this. # model.generation_config = GenerationConfig.from_pretrained("./Qwen-1_8B-Chat", trust_remote_code=True) # 可指定不同的生成长度、top_p等相关超参 response, history = model.chat(tokenizer, "你好", history=None) print(response) ```