Created Model card
Browse files
README.md
CHANGED
|
@@ -1,3 +1,31 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
pipeline_tag: image-classification
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
ONNX port of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50).
|
| 7 |
+
|
| 8 |
+
This model is intended to be used for image classification and similarity searches.
|
| 9 |
+
|
| 10 |
+
You can find the ONNX port implementation [here](https://github.com/qdrant/fastembed/blob/main/experiments/Example.%20Convert%20Resnet50%20to%20ONNX.ipynb)
|
| 11 |
+
|
| 12 |
+
### Usage
|
| 13 |
+
|
| 14 |
+
Here's an example of performing inference using the model with [FastEmbed](https://github.com/qdrant/fastembed).
|
| 15 |
+
|
| 16 |
+
```py
|
| 17 |
+
from fastembed import ImageEmbedding
|
| 18 |
+
|
| 19 |
+
images = [
|
| 20 |
+
"./path/to/image1.jpg",
|
| 21 |
+
"./path/to/image2.jpg",
|
| 22 |
+
]
|
| 23 |
+
|
| 24 |
+
model = ImageEmbedding(model_name="Qdrant/resnet50-onnx")
|
| 25 |
+
embeddings = list(embedding_model.embed(images))
|
| 26 |
+
|
| 27 |
+
# [
|
| 28 |
+
# array([-0.1115, 0.0097, 0.0052, 0.0195, ...], dtype=float32),
|
| 29 |
+
# array([-0.1019, 0.0635, -0.0332, 0.0522, ...], dtype=float32)
|
| 30 |
+
# ]
|
| 31 |
+
```
|