--- library_name: transformers license: other base_model: nvidia/mit-b0 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b0-finetuned-batch1-30nov results: [] --- # segformer-b0-finetuned-batch1-30nov This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the PushkarA07/batch1-tiles dataset. It achieves the following results on the evaluation set: - Loss: 0.0966 - Mean Iou: 0.5771 - Mean Accuracy: 0.6248 - Overall Accuracy: 0.9912 - Accuracy Abnormality: 0.2533 - Iou Abnormality: 0.1629 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Abnormality | Iou Abnormality | |:-------------:|:------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:--------------------:|:---------------:| | 0.5472 | 0.4167 | 10 | 0.6708 | 0.4927 | 0.8372 | 0.9235 | 0.7497 | 0.0623 | | 0.4938 | 0.8333 | 20 | 0.6279 | 0.5549 | 0.7553 | 0.9766 | 0.5310 | 0.1333 | | 0.4212 | 1.25 | 30 | 0.5862 | 0.5301 | 0.7733 | 0.9634 | 0.5807 | 0.0970 | | 0.3701 | 1.6667 | 40 | 0.4789 | 0.5446 | 0.6614 | 0.9811 | 0.3373 | 0.1080 | | 0.2942 | 2.0833 | 50 | 0.4493 | 0.5046 | 0.7100 | 0.9499 | 0.4667 | 0.0594 | | 0.3006 | 2.5 | 60 | 0.2510 | 0.5474 | 0.6485 | 0.9833 | 0.3091 | 0.1116 | | 0.2309 | 2.9167 | 70 | 0.3163 | 0.5131 | 0.6837 | 0.9610 | 0.4027 | 0.0654 | | 0.2249 | 3.3333 | 80 | 0.3296 | 0.5296 | 0.7012 | 0.9703 | 0.4284 | 0.0891 | | 0.2643 | 3.75 | 90 | 0.3136 | 0.5328 | 0.7081 | 0.9713 | 0.4413 | 0.0943 | | 0.2062 | 4.1667 | 100 | 0.2595 | 0.5395 | 0.6919 | 0.9761 | 0.4039 | 0.1029 | | 0.1932 | 4.5833 | 110 | 0.2060 | 0.5752 | 0.6311 | 0.9905 | 0.2667 | 0.1599 | | 0.1693 | 5.0 | 120 | 0.2871 | 0.5652 | 0.6707 | 0.9859 | 0.3512 | 0.1445 | | 0.1555 | 5.4167 | 130 | 0.1601 | 0.5623 | 0.6411 | 0.9876 | 0.2898 | 0.1370 | | 0.1344 | 5.8333 | 140 | 0.1512 | 0.5732 | 0.6543 | 0.9886 | 0.3155 | 0.1578 | | 0.1531 | 6.25 | 150 | 0.1447 | 0.5706 | 0.6309 | 0.9899 | 0.2669 | 0.1514 | | 0.149 | 6.6667 | 160 | 0.1763 | 0.5708 | 0.6415 | 0.9891 | 0.2891 | 0.1526 | | 0.2171 | 7.0833 | 170 | 0.1883 | 0.5695 | 0.6407 | 0.9890 | 0.2876 | 0.1500 | | 0.1207 | 7.5 | 180 | 0.1804 | 0.5725 | 0.6363 | 0.9897 | 0.2780 | 0.1552 | | 0.106 | 7.9167 | 190 | 0.1413 | 0.5712 | 0.6299 | 0.9900 | 0.2648 | 0.1524 | | 0.1234 | 8.3333 | 200 | 0.1407 | 0.5650 | 0.6124 | 0.9904 | 0.2292 | 0.1396 | | 0.2295 | 8.75 | 210 | 0.0943 | 0.5734 | 0.6150 | 0.9914 | 0.2334 | 0.1555 | | 0.1301 | 9.1667 | 220 | 0.0870 | 0.5746 | 0.6135 | 0.9917 | 0.2302 | 0.1575 | | 0.1581 | 9.5833 | 230 | 0.0895 | 0.5747 | 0.6129 | 0.9917 | 0.2289 | 0.1577 | | 0.1062 | 10.0 | 240 | 0.0966 | 0.5771 | 0.6248 | 0.9912 | 0.2533 | 0.1629 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3