sharpenb commited on
Commit
3ca84d0
·
verified ·
1 Parent(s): 21763ce

Upload folder using huggingface_hub (#1)

Browse files

- 5dfc1d3f2789839a75d6e469f3b70cb2ddfcc027887e70cec5248d298fa84dcf (2dd9614bc3104439ffc7014af6cda47188abdf7d)
- 8dd3c71bf4a40c36dd28f7a161772ff8e8179e161cf9f9a0182a1e14779bf627 (22d1718a644f1767db7c3993ea5e600c610684ee)

README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
3
+ base_model: SparseLLM/prosparse-llama-2-7b
4
+ metrics:
5
+ - memory_disk
6
+ - memory_inference
7
+ - inference_latency
8
+ - inference_throughput
9
+ - inference_CO2_emissions
10
+ - inference_energy_consumption
11
+ tags:
12
+ - pruna-ai
13
+ ---
14
+ <!-- header start -->
15
+ <!-- 200823 -->
16
+ <div style="width: auto; margin-left: auto; margin-right: auto">
17
+ <a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
18
+ <img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
19
+ </a>
20
+ </div>
21
+ <!-- header end -->
22
+
23
+ [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI)
24
+ [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI)
25
+ [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
26
+ [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx)
27
+
28
+ # Simply make AI models cheaper, smaller, faster, and greener!
29
+
30
+ - Give a thumbs up if you like this model!
31
+ - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
32
+ - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
33
+ - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
34
+ - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
35
+
36
+ ## Results
37
+
38
+ ![image info](./plots.png)
39
+
40
+ **Frequently Asked Questions**
41
+ - ***How does the compression work?*** The model is compressed with llm-int8.
42
+ - ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
43
+ - ***How is the model efficiency evaluated?*** These results were obtained on HARDWARE_NAME with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
44
+ - ***What is the model format?*** We use safetensors.
45
+ - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
46
+ - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
47
+ - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
48
+ - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
49
+ - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
50
+
51
+ ## Setup
52
+
53
+ You can run the smashed model with these steps:
54
+
55
+ 0. Check requirements from the original repo SparseLLM/prosparse-llama-2-7b installed. In particular, check python, cuda, and transformers versions.
56
+ 1. Make sure that you have installed quantization related packages.
57
+ ```bash
58
+ pip install transformers accelerate bitsandbytes>0.37.0
59
+ ```
60
+ 2. Load & run the model.
61
+ ```python
62
+ from transformers import AutoModelForCausalLM, AutoTokenizer
63
+
64
+
65
+ model = AutoModelForCausalLM.from_pretrained("PrunaAI/SparseLLM-prosparse-llama-2-7b-bnb-8bit-smashed", trust_remote_code=True, device_map='auto')
66
+ tokenizer = AutoTokenizer.from_pretrained("SparseLLM/prosparse-llama-2-7b")
67
+
68
+ input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
69
+
70
+ outputs = model.generate(input_ids, max_new_tokens=216)
71
+ tokenizer.decode(outputs[0])
72
+ ```
73
+
74
+ ## Configurations
75
+
76
+ The configuration info are in `smash_config.json`.
77
+
78
+ ## Credits & License
79
+
80
+ The license of the smashed model follows the license of the original model. Please check the license of the original model SparseLLM/prosparse-llama-2-7b before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
81
+
82
+ ## Want to compress other models?
83
+
84
+ - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
85
+ - Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
config.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/ceph/hdd/staff/charpent/.cache/modelskmi7v46wp5ae2ksq",
3
+ "architectures": [
4
+ "SparseLlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_sparsellama.SparseLlamaConfig",
9
+ "AutoModel": "SparseLLM/prosparse-llama-2-7b--modeling_sparsellama.SparseLlamaForCausalLM",
10
+ "AutoModelForCausalLM": "modeling_sparsellama.SparseLlamaForCausalLM"
11
+ },
12
+ "bos_token_id": 1,
13
+ "eos_token_id": 2,
14
+ "hidden_act": "fatrelu",
15
+ "hidden_act_param": 0.01,
16
+ "hidden_size": 4096,
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 11008,
19
+ "max_length": 4096,
20
+ "max_position_embeddings": 4096,
21
+ "model_type": "sparsellama",
22
+ "num_attention_heads": 32,
23
+ "num_hidden_layers": 32,
24
+ "num_key_value_heads": 32,
25
+ "pretraining_tp": 1,
26
+ "quantization_config": {
27
+ "_load_in_4bit": false,
28
+ "_load_in_8bit": true,
29
+ "bnb_4bit_compute_dtype": "bfloat16",
30
+ "bnb_4bit_quant_storage": "uint8",
31
+ "bnb_4bit_quant_type": "fp4",
32
+ "bnb_4bit_use_double_quant": false,
33
+ "llm_int8_enable_fp32_cpu_offload": false,
34
+ "llm_int8_has_fp16_weight": false,
35
+ "llm_int8_skip_modules": [
36
+ "lm_head"
37
+ ],
38
+ "llm_int8_threshold": 6.0,
39
+ "load_in_4bit": false,
40
+ "load_in_8bit": true,
41
+ "quant_method": "bitsandbytes"
42
+ },
43
+ "rms_norm_eps": 1e-05,
44
+ "rope_scaling": null,
45
+ "rope_theta": 10000.0,
46
+ "tie_word_embeddings": false,
47
+ "torch_dtype": "float16",
48
+ "transformers_version": "4.42.4",
49
+ "use_cache": true,
50
+ "vocab_size": 32000
51
+ }
configuration_sparsellama.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ LLaMA model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.utils import logging
24
+
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+ LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
29
+
30
+
31
+ class SparseLlamaConfig(PretrainedConfig):
32
+ r"""
33
+ This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
34
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
35
+ defaults will yield a similar configuration to that of the LLaMA-7B.
36
+
37
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
38
+ documentation from [`PretrainedConfig`] for more information.
39
+
40
+
41
+ Args:
42
+ vocab_size (`int`, *optional*, defaults to 32000):
43
+ Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
44
+ `inputs_ids` passed when calling [`LlamaModel`]
45
+ hidden_size (`int`, *optional*, defaults to 4096):
46
+ Dimension of the hidden representations.
47
+ intermediate_size (`int`, *optional*, defaults to 11008):
48
+ Dimension of the MLP representations.
49
+ num_hidden_layers (`int`, *optional*, defaults to 32):
50
+ Number of hidden layers in the Transformer decoder.
51
+ num_attention_heads (`int`, *optional*, defaults to 32):
52
+ Number of attention heads for each attention layer in the Transformer decoder.
53
+ num_key_value_heads (`int`, *optional*):
54
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
55
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
56
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
57
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
58
+ by meanpooling all the original heads within that group. For more details checkout [this
59
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
60
+ `num_attention_heads`.
61
+ hidden_act (`str` or `function`, *optional*, defaults to `"fatrelu"`):
62
+ The non-linear activation function (function or string) in the decoder.
63
+ hidden_act_param (`float`, *optional*, defaults to 0.):
64
+ The bias for shiftrelu or threshold for fatrelu.
65
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
66
+ The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
67
+ Llama 2 up to 4096, CodeLlama up to 16384.
68
+ initializer_range (`float`, *optional*, defaults to 0.02):
69
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
70
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
71
+ The epsilon used by the rms normalization layers.
72
+ use_cache (`bool`, *optional*, defaults to `True`):
73
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
74
+ relevant if `config.is_decoder=True`.
75
+ pad_token_id (`int`, *optional*):
76
+ Padding token id.
77
+ bos_token_id (`int`, *optional*, defaults to 1):
78
+ Beginning of stream token id.
79
+ eos_token_id (`int`, *optional*, defaults to 2):
80
+ End of stream token id.
81
+ pretraining_tp (`int`, *optional*, defaults to 1):
82
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
83
+ document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
84
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
85
+ issue](https://github.com/pytorch/pytorch/issues/76232).
86
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
87
+ Whether to tie weight embeddings
88
+ rope_theta (`float`, *optional*, defaults to 10000.0):
89
+ The base period of the RoPE embeddings.
90
+ rope_scaling (`Dict`, *optional*):
91
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
92
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
93
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
94
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
95
+ these scaling strategies behave:
96
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
97
+ experimental feature, subject to breaking API changes in future versions.
98
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
99
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
100
+
101
+
102
+ ```python
103
+ >>> from transformers import LlamaModel, LlamaConfig
104
+
105
+ >>> # Initializing a LLaMA llama-7b style configuration
106
+ >>> configuration = LlamaConfig()
107
+
108
+ >>> # Initializing a model from the llama-7b style configuration
109
+ >>> model = LlamaModel(configuration)
110
+
111
+ >>> # Accessing the model configuration
112
+ >>> configuration = model.config
113
+ ```"""
114
+ model_type = "sparsellama"
115
+ keys_to_ignore_at_inference = ["past_key_values"]
116
+
117
+ def __init__(
118
+ self,
119
+ vocab_size=32000,
120
+ hidden_size=4096,
121
+ intermediate_size=11008,
122
+ num_hidden_layers=32,
123
+ num_attention_heads=32,
124
+ num_key_value_heads=None,
125
+ hidden_act="fatrelu",
126
+ hidden_act_param=0.,
127
+ max_position_embeddings=2048,
128
+ initializer_range=0.02,
129
+ rms_norm_eps=1e-6,
130
+ use_cache=True,
131
+ pad_token_id=None,
132
+ bos_token_id=1,
133
+ eos_token_id=2,
134
+ pretraining_tp=1,
135
+ tie_word_embeddings=False,
136
+ rope_theta=10000.0,
137
+ rope_scaling=None,
138
+ attention_bias=False,
139
+ **kwargs,
140
+ ):
141
+ self.vocab_size = vocab_size
142
+ self.max_position_embeddings = max_position_embeddings
143
+ self.hidden_size = hidden_size
144
+ self.intermediate_size = intermediate_size
145
+ self.num_hidden_layers = num_hidden_layers
146
+ self.num_attention_heads = num_attention_heads
147
+
148
+ # for backward compatibility
149
+ if num_key_value_heads is None:
150
+ num_key_value_heads = num_attention_heads
151
+
152
+ self.num_key_value_heads = num_key_value_heads
153
+ self.hidden_act = hidden_act
154
+ self.hidden_act_param = hidden_act_param
155
+ self.initializer_range = initializer_range
156
+ self.rms_norm_eps = rms_norm_eps
157
+ self.pretraining_tp = pretraining_tp
158
+ self.use_cache = use_cache
159
+ self.rope_theta = rope_theta
160
+ self.rope_scaling = rope_scaling
161
+ self._rope_scaling_validation()
162
+ self.attention_bias = attention_bias
163
+
164
+ super().__init__(
165
+ pad_token_id=pad_token_id,
166
+ bos_token_id=bos_token_id,
167
+ eos_token_id=eos_token_id,
168
+ tie_word_embeddings=tie_word_embeddings,
169
+ **kwargs,
170
+ )
171
+
172
+ def _rope_scaling_validation(self):
173
+ """
174
+ Validate the `rope_scaling` configuration.
175
+ """
176
+ if self.rope_scaling is None:
177
+ return
178
+
179
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
180
+ raise ValueError(
181
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
182
+ f"got {self.rope_scaling}"
183
+ )
184
+ rope_scaling_type = self.rope_scaling.get("type", None)
185
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
186
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
187
+ raise ValueError(
188
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
189
+ )
190
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
191
+ raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "do_sample": true,
4
+ "eos_token_id": 2,
5
+ "max_length": 4096,
6
+ "pad_token_id": 0,
7
+ "temperature": 0.6,
8
+ "top_p": 0.9,
9
+ "transformers_version": "4.42.4"
10
+ }
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3bba052de70fd3f9e19191168a439c8de8038993a1de581ffa11e6523966e2b
3
+ size 4988274536
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb5297135f6cba3bef86f0324fcbbb117d519c6be24a3e474f4568111c0bcb3d
3
+ size 2018046512
model.safetensors.index.json ADDED
@@ -0,0 +1,522 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 7006265344
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
19
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.0.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
21
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.0.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
23
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.1.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
33
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.1.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
35
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.1.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
37
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.1.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
39
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.10.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
44
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.10.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
46
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.10.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
49
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.10.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
51
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.10.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
53
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.10.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
55
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.11.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
58
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.11.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
60
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.11.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
62
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.11.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
65
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.11.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
67
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.11.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
69
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.11.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
71
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.12.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
74
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.12.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
76
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.12.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
78
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.12.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
81
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.12.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
83
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.12.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
85
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.12.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
87
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.13.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
90
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.13.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
92
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.13.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
94
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.13.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
97
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.13.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
99
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.13.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
101
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.13.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
103
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.14.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
106
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.14.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
108
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.14.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
110
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.14.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
113
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.14.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
115
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.14.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
117
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.14.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
119
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.15.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
122
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.15.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
124
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.15.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
126
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
127
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.15.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
129
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.15.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
131
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.15.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
133
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
134
+ "model.layers.15.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
135
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
136
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
137
+ "model.layers.16.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
138
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
139
+ "model.layers.16.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
140
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.16.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
142
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.16.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
145
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
146
+ "model.layers.16.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
147
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
148
+ "model.layers.16.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
149
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.16.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
151
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.17.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
154
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.17.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
156
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
157
+ "model.layers.17.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
158
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
160
+ "model.layers.17.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
161
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
162
+ "model.layers.17.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
163
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.17.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
165
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.17.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
167
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
169
+ "model.layers.18.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
170
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.18.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
172
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
173
+ "model.layers.18.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
174
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
175
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
176
+ "model.layers.18.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
177
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.18.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
179
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.18.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
181
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
182
+ "model.layers.18.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
183
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
184
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
185
+ "model.layers.19.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
186
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
187
+ "model.layers.19.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
188
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.19.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
190
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
192
+ "model.layers.19.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
193
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
194
+ "model.layers.19.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
195
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
196
+ "model.layers.19.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
197
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.19.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
199
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.2.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
202
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.2.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
204
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.2.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
206
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
208
+ "model.layers.2.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
209
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
210
+ "model.layers.2.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
211
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.2.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
213
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.2.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
215
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.20.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
218
+ "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.20.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
220
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
221
+ "model.layers.20.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
222
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
223
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.20.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
225
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.20.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
227
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.20.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
229
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
230
+ "model.layers.20.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
231
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
232
+ "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
233
+ "model.layers.21.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
234
+ "model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
235
+ "model.layers.21.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
236
+ "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.21.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
238
+ "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.21.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
241
+ "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
242
+ "model.layers.21.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
243
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.21.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
245
+ "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.21.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
247
+ "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.22.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
250
+ "model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.22.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
252
+ "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.22.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
254
+ "model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
256
+ "model.layers.22.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
257
+ "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
258
+ "model.layers.22.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
259
+ "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
260
+ "model.layers.22.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
261
+ "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
262
+ "model.layers.22.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
263
+ "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
264
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
265
+ "model.layers.23.mlp.down_proj.SCB": "model-00002-of-00002.safetensors",
266
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
267
+ "model.layers.23.mlp.gate_proj.SCB": "model-00002-of-00002.safetensors",
268
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
269
+ "model.layers.23.mlp.up_proj.SCB": "model-00002-of-00002.safetensors",
270
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
271
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
272
+ "model.layers.23.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
273
+ "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
274
+ "model.layers.23.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
275
+ "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
276
+ "model.layers.23.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
277
+ "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
278
+ "model.layers.23.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
279
+ "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
280
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
281
+ "model.layers.24.mlp.down_proj.SCB": "model-00002-of-00002.safetensors",
282
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
283
+ "model.layers.24.mlp.gate_proj.SCB": "model-00002-of-00002.safetensors",
284
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
285
+ "model.layers.24.mlp.up_proj.SCB": "model-00002-of-00002.safetensors",
286
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
287
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
288
+ "model.layers.24.self_attn.k_proj.SCB": "model-00002-of-00002.safetensors",
289
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
290
+ "model.layers.24.self_attn.o_proj.SCB": "model-00002-of-00002.safetensors",
291
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
292
+ "model.layers.24.self_attn.q_proj.SCB": "model-00002-of-00002.safetensors",
293
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
294
+ "model.layers.24.self_attn.v_proj.SCB": "model-00002-of-00002.safetensors",
295
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
296
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
297
+ "model.layers.25.mlp.down_proj.SCB": "model-00002-of-00002.safetensors",
298
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.25.mlp.gate_proj.SCB": "model-00002-of-00002.safetensors",
300
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
301
+ "model.layers.25.mlp.up_proj.SCB": "model-00002-of-00002.safetensors",
302
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
304
+ "model.layers.25.self_attn.k_proj.SCB": "model-00002-of-00002.safetensors",
305
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
306
+ "model.layers.25.self_attn.o_proj.SCB": "model-00002-of-00002.safetensors",
307
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
308
+ "model.layers.25.self_attn.q_proj.SCB": "model-00002-of-00002.safetensors",
309
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
310
+ "model.layers.25.self_attn.v_proj.SCB": "model-00002-of-00002.safetensors",
311
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
312
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
313
+ "model.layers.26.mlp.down_proj.SCB": "model-00002-of-00002.safetensors",
314
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
315
+ "model.layers.26.mlp.gate_proj.SCB": "model-00002-of-00002.safetensors",
316
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
317
+ "model.layers.26.mlp.up_proj.SCB": "model-00002-of-00002.safetensors",
318
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
319
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
320
+ "model.layers.26.self_attn.k_proj.SCB": "model-00002-of-00002.safetensors",
321
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
322
+ "model.layers.26.self_attn.o_proj.SCB": "model-00002-of-00002.safetensors",
323
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
324
+ "model.layers.26.self_attn.q_proj.SCB": "model-00002-of-00002.safetensors",
325
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
326
+ "model.layers.26.self_attn.v_proj.SCB": "model-00002-of-00002.safetensors",
327
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
328
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
329
+ "model.layers.27.mlp.down_proj.SCB": "model-00002-of-00002.safetensors",
330
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
331
+ "model.layers.27.mlp.gate_proj.SCB": "model-00002-of-00002.safetensors",
332
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
333
+ "model.layers.27.mlp.up_proj.SCB": "model-00002-of-00002.safetensors",
334
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
335
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
336
+ "model.layers.27.self_attn.k_proj.SCB": "model-00002-of-00002.safetensors",
337
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
338
+ "model.layers.27.self_attn.o_proj.SCB": "model-00002-of-00002.safetensors",
339
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
340
+ "model.layers.27.self_attn.q_proj.SCB": "model-00002-of-00002.safetensors",
341
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
342
+ "model.layers.27.self_attn.v_proj.SCB": "model-00002-of-00002.safetensors",
343
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
344
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
345
+ "model.layers.28.mlp.down_proj.SCB": "model-00002-of-00002.safetensors",
346
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
347
+ "model.layers.28.mlp.gate_proj.SCB": "model-00002-of-00002.safetensors",
348
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
349
+ "model.layers.28.mlp.up_proj.SCB": "model-00002-of-00002.safetensors",
350
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
351
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
352
+ "model.layers.28.self_attn.k_proj.SCB": "model-00002-of-00002.safetensors",
353
+ "model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
354
+ "model.layers.28.self_attn.o_proj.SCB": "model-00002-of-00002.safetensors",
355
+ "model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
356
+ "model.layers.28.self_attn.q_proj.SCB": "model-00002-of-00002.safetensors",
357
+ "model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
358
+ "model.layers.28.self_attn.v_proj.SCB": "model-00002-of-00002.safetensors",
359
+ "model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
360
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
361
+ "model.layers.29.mlp.down_proj.SCB": "model-00002-of-00002.safetensors",
362
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
363
+ "model.layers.29.mlp.gate_proj.SCB": "model-00002-of-00002.safetensors",
364
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
365
+ "model.layers.29.mlp.up_proj.SCB": "model-00002-of-00002.safetensors",
366
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
367
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
368
+ "model.layers.29.self_attn.k_proj.SCB": "model-00002-of-00002.safetensors",
369
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
370
+ "model.layers.29.self_attn.o_proj.SCB": "model-00002-of-00002.safetensors",
371
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
372
+ "model.layers.29.self_attn.q_proj.SCB": "model-00002-of-00002.safetensors",
373
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
374
+ "model.layers.29.self_attn.v_proj.SCB": "model-00002-of-00002.safetensors",
375
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
376
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
377
+ "model.layers.3.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
378
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
379
+ "model.layers.3.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
380
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
381
+ "model.layers.3.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
382
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
384
+ "model.layers.3.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
385
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
386
+ "model.layers.3.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
387
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
388
+ "model.layers.3.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
389
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
390
+ "model.layers.3.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
391
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
392
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
393
+ "model.layers.30.mlp.down_proj.SCB": "model-00002-of-00002.safetensors",
394
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
395
+ "model.layers.30.mlp.gate_proj.SCB": "model-00002-of-00002.safetensors",
396
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
397
+ "model.layers.30.mlp.up_proj.SCB": "model-00002-of-00002.safetensors",
398
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
399
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
400
+ "model.layers.30.self_attn.k_proj.SCB": "model-00002-of-00002.safetensors",
401
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
402
+ "model.layers.30.self_attn.o_proj.SCB": "model-00002-of-00002.safetensors",
403
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
404
+ "model.layers.30.self_attn.q_proj.SCB": "model-00002-of-00002.safetensors",
405
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
406
+ "model.layers.30.self_attn.v_proj.SCB": "model-00002-of-00002.safetensors",
407
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
408
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
409
+ "model.layers.31.mlp.down_proj.SCB": "model-00002-of-00002.safetensors",
410
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
411
+ "model.layers.31.mlp.gate_proj.SCB": "model-00002-of-00002.safetensors",
412
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
413
+ "model.layers.31.mlp.up_proj.SCB": "model-00002-of-00002.safetensors",
414
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
415
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
416
+ "model.layers.31.self_attn.k_proj.SCB": "model-00002-of-00002.safetensors",
417
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
418
+ "model.layers.31.self_attn.o_proj.SCB": "model-00002-of-00002.safetensors",
419
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
420
+ "model.layers.31.self_attn.q_proj.SCB": "model-00002-of-00002.safetensors",
421
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
422
+ "model.layers.31.self_attn.v_proj.SCB": "model-00002-of-00002.safetensors",
423
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
424
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
425
+ "model.layers.4.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
426
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
427
+ "model.layers.4.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
428
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
429
+ "model.layers.4.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
430
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
431
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
432
+ "model.layers.4.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
433
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
434
+ "model.layers.4.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
435
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
436
+ "model.layers.4.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
437
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
438
+ "model.layers.4.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
439
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
440
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
441
+ "model.layers.5.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
442
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
443
+ "model.layers.5.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
444
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
445
+ "model.layers.5.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
446
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
447
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
448
+ "model.layers.5.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
449
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
450
+ "model.layers.5.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
451
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
452
+ "model.layers.5.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
453
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
454
+ "model.layers.5.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
455
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
456
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
457
+ "model.layers.6.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
458
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
459
+ "model.layers.6.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
460
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
461
+ "model.layers.6.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
462
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
463
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
464
+ "model.layers.6.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
465
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
466
+ "model.layers.6.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
467
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
468
+ "model.layers.6.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
469
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
470
+ "model.layers.6.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
471
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
472
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
473
+ "model.layers.7.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
474
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
475
+ "model.layers.7.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
476
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
477
+ "model.layers.7.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
478
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
479
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
480
+ "model.layers.7.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
481
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
482
+ "model.layers.7.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
483
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
484
+ "model.layers.7.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
485
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
486
+ "model.layers.7.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
487
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
488
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
489
+ "model.layers.8.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
490
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
491
+ "model.layers.8.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
492
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
493
+ "model.layers.8.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
494
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
495
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
496
+ "model.layers.8.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
497
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
498
+ "model.layers.8.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
499
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
500
+ "model.layers.8.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
501
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
502
+ "model.layers.8.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
503
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
504
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
505
+ "model.layers.9.mlp.down_proj.SCB": "model-00001-of-00002.safetensors",
506
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
507
+ "model.layers.9.mlp.gate_proj.SCB": "model-00001-of-00002.safetensors",
508
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
509
+ "model.layers.9.mlp.up_proj.SCB": "model-00001-of-00002.safetensors",
510
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
511
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
512
+ "model.layers.9.self_attn.k_proj.SCB": "model-00001-of-00002.safetensors",
513
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
514
+ "model.layers.9.self_attn.o_proj.SCB": "model-00001-of-00002.safetensors",
515
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
516
+ "model.layers.9.self_attn.q_proj.SCB": "model-00001-of-00002.safetensors",
517
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
518
+ "model.layers.9.self_attn.v_proj.SCB": "model-00001-of-00002.safetensors",
519
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
520
+ "model.norm.weight": "model-00002-of-00002.safetensors"
521
+ }
522
+ }
modeling_sparsellama.py ADDED
@@ -0,0 +1,1262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch LLaMA model."""
21
+ import math
22
+ import warnings
23
+ from typing import List, Optional, Tuple, Union
24
+
25
+ import torch
26
+ import torch.nn.functional as F
27
+ import torch.utils.checkpoint
28
+ from torch import nn
29
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
30
+
31
+ from transformers.activations import ACT2FN
32
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter, _prepare_4d_causal_attention_mask
33
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
34
+ from transformers.modeling_utils import PreTrainedModel
35
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
36
+ from transformers.utils import (
37
+ add_start_docstrings,
38
+ add_start_docstrings_to_model_forward,
39
+ is_flash_attn_2_available,
40
+ logging,
41
+ replace_return_docstrings,
42
+ )
43
+ from transformers.utils.import_utils import is_torch_fx_available
44
+ from .configuration_sparsellama import SparseLlamaConfig
45
+
46
+
47
+ if is_flash_attn_2_available():
48
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
49
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
50
+
51
+
52
+ # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
53
+ # It means that the function will not be traced through and simply appear as a node in the graph.
54
+ if is_torch_fx_available():
55
+ _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
56
+
57
+
58
+ logger = logging.get_logger(__name__)
59
+
60
+ _CONFIG_FOR_DOC = "LlamaConfig"
61
+
62
+
63
+ def _get_unpad_data(attention_mask):
64
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
65
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
66
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
67
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
68
+ return (
69
+ indices,
70
+ cu_seqlens,
71
+ max_seqlen_in_batch,
72
+ )
73
+
74
+
75
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
76
+ warnings.warn(
77
+ "Calling `transformers.models.llama.modeling_llama._prepare_4d_attention_mask` is deprecated and will be removed in v4.37. Use `transformers.modeling_attn_mask_utils.AttentionMaskConverter._prepare_4d_attention_mask"
78
+ )
79
+ return AttentionMaskConverter._prepare_4d_attention_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
80
+
81
+
82
+ def _make_causal_mask(
83
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
84
+ ):
85
+ warnings.warn(
86
+ "Calling `transformers.models.llama.modeling_llama._make_causal_mask` is deprecated and will be removed in v4.37. Use `transformers.models.llama.modeling_llama.AttentionMaskConverter._make_causal_mask"
87
+ )
88
+ return AttentionMaskConverter._make_causal_mask(
89
+ input_ids_shape=input_ids_shape, dtype=dtype, device=device, past_key_values_length=past_key_values_length
90
+ )
91
+
92
+
93
+ class LlamaRMSNorm(nn.Module):
94
+ def __init__(self, hidden_size, eps=1e-6):
95
+ """
96
+ LlamaRMSNorm is equivalent to T5LayerNorm
97
+ """
98
+ super().__init__()
99
+ self.weight = nn.Parameter(torch.ones(hidden_size))
100
+ self.variance_epsilon = eps
101
+
102
+ def forward(self, hidden_states):
103
+ input_dtype = hidden_states.dtype
104
+ hidden_states = hidden_states.to(torch.float32)
105
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
106
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
107
+ return self.weight * hidden_states.to(input_dtype)
108
+
109
+
110
+ ALL_LAYERNORM_LAYERS.append(LlamaRMSNorm)
111
+
112
+
113
+ class LlamaRotaryEmbedding(nn.Module):
114
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
115
+ super().__init__()
116
+
117
+ self.dim = dim
118
+ self.max_position_embeddings = max_position_embeddings
119
+ self.base = base
120
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
121
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
122
+
123
+ # Build here to make `torch.jit.trace` work.
124
+ self._set_cos_sin_cache(
125
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
126
+ )
127
+
128
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
129
+ self.max_seq_len_cached = seq_len
130
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
131
+
132
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
133
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
134
+ emb = torch.cat((freqs, freqs), dim=-1)
135
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
136
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
137
+
138
+ def forward(self, x, seq_len=None):
139
+ # x: [bs, num_attention_heads, seq_len, head_size]
140
+ if seq_len > self.max_seq_len_cached:
141
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
142
+
143
+ return (
144
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
145
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
146
+ )
147
+
148
+
149
+ class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
150
+ """LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
151
+
152
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
153
+ self.scaling_factor = scaling_factor
154
+ super().__init__(dim, max_position_embeddings, base, device)
155
+
156
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
157
+ self.max_seq_len_cached = seq_len
158
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
159
+ t = t / self.scaling_factor
160
+
161
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
162
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
163
+ emb = torch.cat((freqs, freqs), dim=-1)
164
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
165
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
166
+
167
+
168
+ class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
169
+ """LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
170
+
171
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
172
+ self.scaling_factor = scaling_factor
173
+ super().__init__(dim, max_position_embeddings, base, device)
174
+
175
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
176
+ self.max_seq_len_cached = seq_len
177
+
178
+ if seq_len > self.max_position_embeddings:
179
+ base = self.base * (
180
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
181
+ ) ** (self.dim / (self.dim - 2))
182
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
183
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
184
+
185
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
186
+
187
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
188
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
189
+ emb = torch.cat((freqs, freqs), dim=-1)
190
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
191
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
192
+
193
+
194
+ def rotate_half(x):
195
+ """Rotates half the hidden dims of the input."""
196
+ x1 = x[..., : x.shape[-1] // 2]
197
+ x2 = x[..., x.shape[-1] // 2 :]
198
+ return torch.cat((-x2, x1), dim=-1)
199
+
200
+
201
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
202
+ """Applies Rotary Position Embedding to the query and key tensors.
203
+
204
+ Args:
205
+ q (`torch.Tensor`): The query tensor.
206
+ k (`torch.Tensor`): The key tensor.
207
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
208
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
209
+ position_ids (`torch.Tensor`):
210
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
211
+ used to pass offsetted position ids when working with a KV-cache.
212
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
213
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
214
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
215
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
216
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
217
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
218
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
219
+ Returns:
220
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
221
+ """
222
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
223
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
224
+ q_embed = (q * cos) + (rotate_half(q) * sin)
225
+ k_embed = (k * cos) + (rotate_half(k) * sin)
226
+ return q_embed, k_embed
227
+
228
+
229
+ class SparseLlamaMLP(nn.Module):
230
+ def __init__(self, config: SparseLlamaConfig):
231
+ super().__init__()
232
+ self.config = config
233
+ self.hidden_size = config.hidden_size
234
+ self.intermediate_size = config.intermediate_size
235
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
236
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
237
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
238
+ if config.hidden_act in ACT2FN:
239
+ self.act_fn = ACT2FN[config.hidden_act]
240
+ elif config.hidden_act == "shiftrelu":
241
+ def shifted_relu(x):
242
+ return torch.nn.functional.relu(x - config.hidden_act_param)
243
+ self.act_fn = shifted_relu
244
+ elif config.hidden_act == "fatrelu":
245
+ def fat_relu(x):
246
+ new_x = torch.zeros_like(x)
247
+ mask = torch.ge(x, config.hidden_act_param)
248
+ new_x[mask] = x[mask]
249
+ return new_x
250
+ self.act_fn = fat_relu
251
+ else:
252
+ raise NotImplementedError(f"Unsupported activation function: {config.hidden_act}")
253
+
254
+ def forward(self, x):
255
+ if self.config.pretraining_tp > 1:
256
+ slice = self.intermediate_size // self.config.pretraining_tp
257
+ gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
258
+ up_proj_slices = self.up_proj.weight.split(slice, dim=0)
259
+ down_proj_slices = self.down_proj.weight.split(slice, dim=1)
260
+
261
+ gate_proj = torch.cat(
262
+ [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
263
+ )
264
+ up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
265
+
266
+ intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
267
+ down_proj = [
268
+ F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
269
+ ]
270
+ down_proj = sum(down_proj)
271
+ else:
272
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
273
+
274
+ return down_proj
275
+
276
+
277
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
278
+ """
279
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
280
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
281
+ """
282
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
283
+ if n_rep == 1:
284
+ return hidden_states
285
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
286
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
287
+
288
+
289
+ class LlamaAttention(nn.Module):
290
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
291
+
292
+ def __init__(self, config: SparseLlamaConfig):
293
+ super().__init__()
294
+ self.config = config
295
+ self.hidden_size = config.hidden_size
296
+ self.num_heads = config.num_attention_heads
297
+ self.head_dim = self.hidden_size // self.num_heads
298
+ self.num_key_value_heads = config.num_key_value_heads
299
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
300
+ self.max_position_embeddings = config.max_position_embeddings
301
+ self.rope_theta = config.rope_theta
302
+ self.is_causal = True
303
+
304
+ if (self.head_dim * self.num_heads) != self.hidden_size:
305
+ raise ValueError(
306
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
307
+ f" and `num_heads`: {self.num_heads})."
308
+ )
309
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
310
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
311
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
312
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
313
+ self._init_rope()
314
+
315
+ def _init_rope(self):
316
+ if self.config.rope_scaling is None:
317
+ self.rotary_emb = LlamaRotaryEmbedding(
318
+ self.head_dim,
319
+ max_position_embeddings=self.max_position_embeddings,
320
+ base=self.rope_theta,
321
+ )
322
+ else:
323
+ scaling_type = self.config.rope_scaling["type"]
324
+ scaling_factor = self.config.rope_scaling["factor"]
325
+ if scaling_type == "linear":
326
+ self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
327
+ self.head_dim,
328
+ max_position_embeddings=self.max_position_embeddings,
329
+ scaling_factor=scaling_factor,
330
+ base=self.rope_theta,
331
+ )
332
+ elif scaling_type == "dynamic":
333
+ self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
334
+ self.head_dim,
335
+ max_position_embeddings=self.max_position_embeddings,
336
+ scaling_factor=scaling_factor,
337
+ base=self.rope_theta,
338
+ )
339
+ else:
340
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
341
+
342
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
343
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
344
+
345
+ def forward(
346
+ self,
347
+ hidden_states: torch.Tensor,
348
+ attention_mask: Optional[torch.Tensor] = None,
349
+ position_ids: Optional[torch.LongTensor] = None,
350
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
351
+ output_attentions: bool = False,
352
+ use_cache: bool = False,
353
+ **kwargs,
354
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
355
+ if "padding_mask" in kwargs:
356
+ warnings.warn(
357
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
358
+ )
359
+
360
+ bsz, q_len, _ = hidden_states.size()
361
+
362
+ if self.config.pretraining_tp > 1:
363
+ key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
364
+ query_slices = self.q_proj.weight.split(
365
+ (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
366
+ )
367
+ key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
368
+ value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
369
+
370
+ query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
371
+ query_states = torch.cat(query_states, dim=-1)
372
+
373
+ key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
374
+ key_states = torch.cat(key_states, dim=-1)
375
+
376
+ value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
377
+ value_states = torch.cat(value_states, dim=-1)
378
+
379
+ else:
380
+ query_states = self.q_proj(hidden_states)
381
+ key_states = self.k_proj(hidden_states)
382
+ value_states = self.v_proj(hidden_states)
383
+
384
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
385
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
386
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
387
+
388
+ kv_seq_len = key_states.shape[-2]
389
+ if past_key_value is not None:
390
+ kv_seq_len += past_key_value[0].shape[-2]
391
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
392
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
393
+
394
+ if past_key_value is not None:
395
+ # reuse k, v, self_attention
396
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
397
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
398
+
399
+ past_key_value = (key_states, value_states) if use_cache else None
400
+
401
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
402
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
403
+
404
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
405
+
406
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
407
+ raise ValueError(
408
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
409
+ f" {attn_weights.size()}"
410
+ )
411
+
412
+ if attention_mask is not None:
413
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
414
+ raise ValueError(
415
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
416
+ )
417
+ attn_weights = attn_weights + attention_mask
418
+
419
+ # upcast attention to fp32
420
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
421
+ attn_output = torch.matmul(attn_weights, value_states)
422
+
423
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
424
+ raise ValueError(
425
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
426
+ f" {attn_output.size()}"
427
+ )
428
+
429
+ attn_output = attn_output.transpose(1, 2).contiguous()
430
+
431
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
432
+
433
+ if self.config.pretraining_tp > 1:
434
+ attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
435
+ o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
436
+ attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
437
+ else:
438
+ attn_output = self.o_proj(attn_output)
439
+
440
+ if not output_attentions:
441
+ attn_weights = None
442
+
443
+ return attn_output, attn_weights, past_key_value
444
+
445
+
446
+ class LlamaFlashAttention2(LlamaAttention):
447
+ """
448
+ Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
449
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
450
+ flash attention and deal with padding tokens in case the input contains any of them.
451
+ """
452
+
453
+ def forward(
454
+ self,
455
+ hidden_states: torch.Tensor,
456
+ attention_mask: Optional[torch.LongTensor] = None,
457
+ position_ids: Optional[torch.LongTensor] = None,
458
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
459
+ output_attentions: bool = False,
460
+ use_cache: bool = False,
461
+ **kwargs,
462
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
463
+ # LlamaFlashAttention2 attention does not support output_attentions
464
+ if "padding_mask" in kwargs:
465
+ warnings.warn(
466
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
467
+ )
468
+
469
+ # overwrite attention_mask with padding_mask
470
+ attention_mask = kwargs.pop("padding_mask")
471
+
472
+ output_attentions = False
473
+
474
+ bsz, q_len, _ = hidden_states.size()
475
+
476
+ query_states = self.q_proj(hidden_states)
477
+ key_states = self.k_proj(hidden_states)
478
+ value_states = self.v_proj(hidden_states)
479
+
480
+ # Flash attention requires the input to have the shape
481
+ # batch_size x seq_length x head_dim x hidden_dim
482
+ # therefore we just need to keep the original shape
483
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
484
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
485
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
486
+
487
+ kv_seq_len = key_states.shape[-2]
488
+ if past_key_value is not None:
489
+ kv_seq_len += past_key_value[0].shape[-2]
490
+
491
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
492
+
493
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
494
+
495
+ if past_key_value is not None:
496
+ # reuse k, v, self_attention
497
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
498
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
499
+
500
+ past_key_value = (key_states, value_states) if use_cache else None
501
+
502
+ query_states = query_states.transpose(1, 2)
503
+ key_states = key_states.transpose(1, 2)
504
+ value_states = value_states.transpose(1, 2)
505
+
506
+ # TODO: llama does not have dropout in the config??
507
+ # It is recommended to use dropout with FA according to the docs
508
+ # when training.
509
+ dropout_rate = 0.0 # if not self.training else self.attn_dropout
510
+
511
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
512
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
513
+ # cast them back in the correct dtype just to be sure everything works as expected.
514
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
515
+ # in fp32. (LlamaRMSNorm handles it correctly)
516
+
517
+ input_dtype = query_states.dtype
518
+ if input_dtype == torch.float32:
519
+ # Handle the case where the model is quantized
520
+ if hasattr(self.config, "_pre_quantization_dtype"):
521
+ target_dtype = self.config._pre_quantization_dtype
522
+ else:
523
+ target_dtype = self.q_proj.weight.dtype
524
+
525
+ logger.warning_once(
526
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
527
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
528
+ f" {target_dtype}."
529
+ )
530
+
531
+ query_states = query_states.to(target_dtype)
532
+ key_states = key_states.to(target_dtype)
533
+ value_states = value_states.to(target_dtype)
534
+
535
+ attn_output = self._flash_attention_forward(
536
+ query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
537
+ )
538
+
539
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
540
+ attn_output = self.o_proj(attn_output)
541
+
542
+ if not output_attentions:
543
+ attn_weights = None
544
+
545
+ return attn_output, attn_weights, past_key_value
546
+
547
+ def _flash_attention_forward(
548
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
549
+ ):
550
+ """
551
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
552
+ first unpad the input, then computes the attention scores and pad the final attention scores.
553
+
554
+ Args:
555
+ query_states (`torch.Tensor`):
556
+ Input query states to be passed to Flash Attention API
557
+ key_states (`torch.Tensor`):
558
+ Input key states to be passed to Flash Attention API
559
+ value_states (`torch.Tensor`):
560
+ Input value states to be passed to Flash Attention API
561
+ attention_mask (`torch.Tensor`):
562
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
563
+ position of padding tokens and 1 for the position of non-padding tokens.
564
+ dropout (`int`, *optional*):
565
+ Attention dropout
566
+ softmax_scale (`float`, *optional*):
567
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
568
+ """
569
+ # Contains at least one padding token in the sequence
570
+ if attention_mask is not None:
571
+ batch_size = query_states.shape[0]
572
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
573
+ query_states, key_states, value_states, attention_mask, query_length
574
+ )
575
+
576
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
577
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
578
+
579
+ attn_output_unpad = flash_attn_varlen_func(
580
+ query_states,
581
+ key_states,
582
+ value_states,
583
+ cu_seqlens_q=cu_seqlens_q,
584
+ cu_seqlens_k=cu_seqlens_k,
585
+ max_seqlen_q=max_seqlen_in_batch_q,
586
+ max_seqlen_k=max_seqlen_in_batch_k,
587
+ dropout_p=dropout,
588
+ softmax_scale=softmax_scale,
589
+ causal=self.is_causal,
590
+ )
591
+
592
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
593
+ else:
594
+ attn_output = flash_attn_func(
595
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=self.is_causal
596
+ )
597
+
598
+ return attn_output
599
+
600
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
601
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
602
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
603
+
604
+ key_layer = index_first_axis(
605
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
606
+ )
607
+ value_layer = index_first_axis(
608
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
609
+ )
610
+ if query_length == kv_seq_len:
611
+ query_layer = index_first_axis(
612
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
613
+ )
614
+ cu_seqlens_q = cu_seqlens_k
615
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
616
+ indices_q = indices_k
617
+ elif query_length == 1:
618
+ max_seqlen_in_batch_q = 1
619
+ cu_seqlens_q = torch.arange(
620
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
621
+ ) # There is a memcpy here, that is very bad.
622
+ indices_q = cu_seqlens_q[:-1]
623
+ query_layer = query_layer.squeeze(1)
624
+ else:
625
+ # The -q_len: slice assumes left padding.
626
+ attention_mask = attention_mask[:, -query_length:]
627
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
628
+
629
+ return (
630
+ query_layer,
631
+ key_layer,
632
+ value_layer,
633
+ indices_q,
634
+ (cu_seqlens_q, cu_seqlens_k),
635
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
636
+ )
637
+
638
+
639
+ class LlamaDecoderLayer(nn.Module):
640
+ def __init__(self, config: SparseLlamaConfig):
641
+ super().__init__()
642
+ self.hidden_size = config.hidden_size
643
+ self.self_attn = (
644
+ LlamaAttention(config=config)
645
+ if not getattr(config, "_flash_attn_2_enabled", False)
646
+ else LlamaFlashAttention2(config=config)
647
+ )
648
+ self.mlp = SparseLlamaMLP(config)
649
+ self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
650
+ self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
651
+
652
+ def forward(
653
+ self,
654
+ hidden_states: torch.Tensor,
655
+ attention_mask: Optional[torch.Tensor] = None,
656
+ position_ids: Optional[torch.LongTensor] = None,
657
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
658
+ output_attentions: Optional[bool] = False,
659
+ use_cache: Optional[bool] = False,
660
+ **kwargs,
661
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
662
+ """
663
+ Args:
664
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
665
+ attention_mask (`torch.FloatTensor`, *optional*):
666
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
667
+ query_sequence_length, key_sequence_length)` if default attention is used.
668
+ output_attentions (`bool`, *optional*):
669
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
670
+ returned tensors for more detail.
671
+ use_cache (`bool`, *optional*):
672
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
673
+ (see `past_key_values`).
674
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
675
+ """
676
+ if "padding_mask" in kwargs:
677
+ warnings.warn(
678
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
679
+ )
680
+
681
+ residual = hidden_states
682
+
683
+ hidden_states = self.input_layernorm(hidden_states)
684
+
685
+ # Self Attention
686
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
687
+ hidden_states=hidden_states,
688
+ attention_mask=attention_mask,
689
+ position_ids=position_ids,
690
+ past_key_value=past_key_value,
691
+ output_attentions=output_attentions,
692
+ use_cache=use_cache,
693
+ **kwargs,
694
+ )
695
+ hidden_states = residual + hidden_states
696
+
697
+ # Fully Connected
698
+ residual = hidden_states
699
+ hidden_states = self.post_attention_layernorm(hidden_states)
700
+ hidden_states = self.mlp(hidden_states)
701
+ hidden_states = residual + hidden_states
702
+
703
+ outputs = (hidden_states,)
704
+
705
+ if output_attentions:
706
+ outputs += (self_attn_weights,)
707
+
708
+ if use_cache:
709
+ outputs += (present_key_value,)
710
+
711
+ return outputs
712
+
713
+
714
+ LLAMA_START_DOCSTRING = r"""
715
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
716
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
717
+ etc.)
718
+
719
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
720
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
721
+ and behavior.
722
+
723
+ Parameters:
724
+ config ([`LlamaConfig`]):
725
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
726
+ load the weights associated with the model, only the configuration. Check out the
727
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
728
+ """
729
+
730
+
731
+ @add_start_docstrings(
732
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
733
+ LLAMA_START_DOCSTRING,
734
+ )
735
+ class SparseLlamaPreTrainedModel(PreTrainedModel):
736
+ config_class = SparseLlamaConfig
737
+ base_model_prefix = "model"
738
+ supports_gradient_checkpointing = True
739
+ _no_split_modules = ["LlamaDecoderLayer"]
740
+ _skip_keys_device_placement = "past_key_values"
741
+ _supports_flash_attn_2 = True
742
+
743
+ def _init_weights(self, module):
744
+ std = self.config.initializer_range
745
+ if isinstance(module, nn.Linear):
746
+ module.weight.data.normal_(mean=0.0, std=std)
747
+ if module.bias is not None:
748
+ module.bias.data.zero_()
749
+ elif isinstance(module, nn.Embedding):
750
+ module.weight.data.normal_(mean=0.0, std=std)
751
+ if module.padding_idx is not None:
752
+ module.weight.data[module.padding_idx].zero_()
753
+
754
+
755
+ LLAMA_INPUTS_DOCSTRING = r"""
756
+ Args:
757
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
758
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
759
+ it.
760
+
761
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
762
+ [`PreTrainedTokenizer.__call__`] for details.
763
+
764
+ [What are input IDs?](../glossary#input-ids)
765
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
766
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
767
+
768
+ - 1 for tokens that are **not masked**,
769
+ - 0 for tokens that are **masked**.
770
+
771
+ [What are attention masks?](../glossary#attention-mask)
772
+
773
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
774
+ [`PreTrainedTokenizer.__call__`] for details.
775
+
776
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
777
+ `past_key_values`).
778
+
779
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
780
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
781
+ information on the default strategy.
782
+
783
+ - 1 indicates the head is **not masked**,
784
+ - 0 indicates the head is **masked**.
785
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
786
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
787
+ config.n_positions - 1]`.
788
+
789
+ [What are position IDs?](../glossary#position-ids)
790
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
791
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
792
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
793
+ `(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
794
+
795
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
796
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
797
+
798
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
799
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
800
+ of shape `(batch_size, sequence_length)`.
801
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
802
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
803
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
804
+ model's internal embedding lookup matrix.
805
+ use_cache (`bool`, *optional*):
806
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
807
+ `past_key_values`).
808
+ output_attentions (`bool`, *optional*):
809
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
810
+ tensors for more detail.
811
+ output_hidden_states (`bool`, *optional*):
812
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
813
+ more detail.
814
+ return_dict (`bool`, *optional*):
815
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
816
+ """
817
+
818
+
819
+ @add_start_docstrings(
820
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
821
+ LLAMA_START_DOCSTRING,
822
+ )
823
+ class SparseLlamaModel(SparseLlamaPreTrainedModel):
824
+ """
825
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
826
+
827
+ Args:
828
+ config: LlamaConfig
829
+ """
830
+
831
+ def __init__(self, config: SparseLlamaConfig):
832
+ super().__init__(config)
833
+ self.padding_idx = config.pad_token_id
834
+ self.vocab_size = config.vocab_size
835
+
836
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
837
+ self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
838
+ self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
839
+
840
+ self.gradient_checkpointing = False
841
+ # Initialize weights and apply final processing
842
+ self.post_init()
843
+
844
+ def get_input_embeddings(self):
845
+ return self.embed_tokens
846
+
847
+ def set_input_embeddings(self, value):
848
+ self.embed_tokens = value
849
+
850
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
851
+ def forward(
852
+ self,
853
+ input_ids: torch.LongTensor = None,
854
+ attention_mask: Optional[torch.Tensor] = None,
855
+ position_ids: Optional[torch.LongTensor] = None,
856
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
857
+ inputs_embeds: Optional[torch.FloatTensor] = None,
858
+ use_cache: Optional[bool] = None,
859
+ output_attentions: Optional[bool] = None,
860
+ output_hidden_states: Optional[bool] = None,
861
+ return_dict: Optional[bool] = None,
862
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
863
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
864
+ output_hidden_states = (
865
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
866
+ )
867
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
868
+
869
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
870
+
871
+ # retrieve input_ids and inputs_embeds
872
+ if input_ids is not None and inputs_embeds is not None:
873
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
874
+ elif input_ids is not None:
875
+ batch_size, seq_length = input_ids.shape[:2]
876
+ elif inputs_embeds is not None:
877
+ batch_size, seq_length = inputs_embeds.shape[:2]
878
+ else:
879
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
880
+
881
+ past_key_values_length = 0
882
+ if past_key_values is not None:
883
+ past_key_values_length = past_key_values[0][0].shape[2]
884
+
885
+ if position_ids is None:
886
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
887
+ position_ids = torch.arange(
888
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
889
+ )
890
+ position_ids = position_ids.unsqueeze(0)
891
+
892
+ if inputs_embeds is None:
893
+ inputs_embeds = self.embed_tokens(input_ids)
894
+
895
+ if getattr(self.config, "_flash_attn_2_enabled", False):
896
+ # 2d mask is passed through the layers
897
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
898
+ else:
899
+ # 4d mask is passed through the layers
900
+ attention_mask = _prepare_4d_causal_attention_mask(
901
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
902
+ )
903
+
904
+ # embed positions
905
+ hidden_states = inputs_embeds
906
+
907
+ if self.gradient_checkpointing and self.training:
908
+ if use_cache:
909
+ logger.warning_once(
910
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
911
+ )
912
+ use_cache = False
913
+
914
+ # decoder layers
915
+ all_hidden_states = () if output_hidden_states else None
916
+ all_self_attns = () if output_attentions else None
917
+ next_decoder_cache = () if use_cache else None
918
+
919
+ for idx, decoder_layer in enumerate(self.layers):
920
+ if output_hidden_states:
921
+ all_hidden_states += (hidden_states,)
922
+
923
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
924
+
925
+ if self.gradient_checkpointing and self.training:
926
+ layer_outputs = self._gradient_checkpointing_func(
927
+ decoder_layer.__call__,
928
+ hidden_states,
929
+ attention_mask,
930
+ position_ids,
931
+ past_key_value,
932
+ output_attentions,
933
+ use_cache,
934
+ )
935
+ else:
936
+ layer_outputs = decoder_layer(
937
+ hidden_states,
938
+ attention_mask=attention_mask,
939
+ position_ids=position_ids,
940
+ past_key_value=past_key_value,
941
+ output_attentions=output_attentions,
942
+ use_cache=use_cache,
943
+ )
944
+
945
+ hidden_states = layer_outputs[0]
946
+
947
+ if use_cache:
948
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
949
+
950
+ if output_attentions:
951
+ all_self_attns += (layer_outputs[1],)
952
+
953
+ hidden_states = self.norm(hidden_states)
954
+
955
+ # add hidden states from the last decoder layer
956
+ if output_hidden_states:
957
+ all_hidden_states += (hidden_states,)
958
+
959
+ next_cache = next_decoder_cache if use_cache else None
960
+ if not return_dict:
961
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
962
+ return BaseModelOutputWithPast(
963
+ last_hidden_state=hidden_states,
964
+ past_key_values=next_cache,
965
+ hidden_states=all_hidden_states,
966
+ attentions=all_self_attns,
967
+ )
968
+
969
+
970
+ class SparseLlamaForCausalLM(SparseLlamaPreTrainedModel):
971
+ _tied_weights_keys = ["lm_head.weight"]
972
+
973
+ def __init__(self, config):
974
+ super().__init__(config)
975
+ self.model = SparseLlamaModel(config)
976
+ self.vocab_size = config.vocab_size
977
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
978
+
979
+ # Initialize weights and apply final processing
980
+ self.post_init()
981
+
982
+ def get_input_embeddings(self):
983
+ return self.model.embed_tokens
984
+
985
+ def set_input_embeddings(self, value):
986
+ self.model.embed_tokens = value
987
+
988
+ def get_output_embeddings(self):
989
+ return self.lm_head
990
+
991
+ def set_output_embeddings(self, new_embeddings):
992
+ self.lm_head = new_embeddings
993
+
994
+ def set_decoder(self, decoder):
995
+ self.model = decoder
996
+
997
+ def get_decoder(self):
998
+ return self.model
999
+
1000
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1001
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1002
+ def forward(
1003
+ self,
1004
+ input_ids: torch.LongTensor = None,
1005
+ attention_mask: Optional[torch.Tensor] = None,
1006
+ position_ids: Optional[torch.LongTensor] = None,
1007
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1008
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1009
+ labels: Optional[torch.LongTensor] = None,
1010
+ use_cache: Optional[bool] = None,
1011
+ output_attentions: Optional[bool] = None,
1012
+ output_hidden_states: Optional[bool] = None,
1013
+ return_dict: Optional[bool] = None,
1014
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1015
+ r"""
1016
+ Args:
1017
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1018
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1019
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1020
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1021
+
1022
+ Returns:
1023
+
1024
+ Example:
1025
+
1026
+ ```python
1027
+ >>> from transformers import AutoTokenizer, LlamaForCausalLM
1028
+
1029
+ >>> model = SparseLlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1030
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1031
+
1032
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1033
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1034
+
1035
+ >>> # Generate
1036
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1037
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1038
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1039
+ ```"""
1040
+
1041
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1042
+ output_hidden_states = (
1043
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1044
+ )
1045
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1046
+
1047
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1048
+ outputs = self.model(
1049
+ input_ids=input_ids,
1050
+ attention_mask=attention_mask,
1051
+ position_ids=position_ids,
1052
+ past_key_values=past_key_values,
1053
+ inputs_embeds=inputs_embeds,
1054
+ use_cache=use_cache,
1055
+ output_attentions=output_attentions,
1056
+ output_hidden_states=output_hidden_states,
1057
+ return_dict=return_dict,
1058
+ )
1059
+
1060
+ hidden_states = outputs[0]
1061
+ if self.config.pretraining_tp > 1:
1062
+ lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
1063
+ logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
1064
+ logits = torch.cat(logits, dim=-1)
1065
+ else:
1066
+ logits = self.lm_head(hidden_states)
1067
+ logits = logits.float()
1068
+
1069
+ loss = None
1070
+ if labels is not None:
1071
+ # Shift so that tokens < n predict n
1072
+ shift_logits = logits[..., :-1, :].contiguous()
1073
+ shift_labels = labels[..., 1:].contiguous()
1074
+ # Flatten the tokens
1075
+ loss_fct = CrossEntropyLoss()
1076
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1077
+ shift_labels = shift_labels.view(-1)
1078
+ # Enable model parallelism
1079
+ shift_labels = shift_labels.to(shift_logits.device)
1080
+ loss = loss_fct(shift_logits, shift_labels)
1081
+
1082
+ if not return_dict:
1083
+ output = (logits,) + outputs[1:]
1084
+ return (loss,) + output if loss is not None else output
1085
+
1086
+ return CausalLMOutputWithPast(
1087
+ loss=loss,
1088
+ logits=logits,
1089
+ past_key_values=outputs.past_key_values,
1090
+ hidden_states=outputs.hidden_states,
1091
+ attentions=outputs.attentions,
1092
+ )
1093
+
1094
+ def prepare_inputs_for_generation(
1095
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1096
+ ):
1097
+ if past_key_values is not None:
1098
+ past_length = past_key_values[0][0].shape[2]
1099
+
1100
+ # Some generation methods already pass only the last input ID
1101
+ if input_ids.shape[1] > past_length:
1102
+ remove_prefix_length = past_length
1103
+ else:
1104
+ # Default to old behavior: keep only final ID
1105
+ remove_prefix_length = input_ids.shape[1] - 1
1106
+
1107
+ input_ids = input_ids[:, remove_prefix_length:]
1108
+
1109
+ position_ids = kwargs.get("position_ids", None)
1110
+ if attention_mask is not None and position_ids is None:
1111
+ # create position_ids on the fly for batch generation
1112
+ position_ids = attention_mask.long().cumsum(-1) - 1
1113
+ position_ids.masked_fill_(attention_mask == 0, 1)
1114
+ if past_key_values:
1115
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1116
+
1117
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1118
+ if inputs_embeds is not None and past_key_values is None:
1119
+ model_inputs = {"inputs_embeds": inputs_embeds}
1120
+ else:
1121
+ model_inputs = {"input_ids": input_ids}
1122
+
1123
+ model_inputs.update(
1124
+ {
1125
+ "position_ids": position_ids,
1126
+ "past_key_values": past_key_values,
1127
+ "use_cache": kwargs.get("use_cache"),
1128
+ "attention_mask": attention_mask,
1129
+ }
1130
+ )
1131
+ return model_inputs
1132
+
1133
+ @staticmethod
1134
+ def _reorder_cache(past_key_values, beam_idx):
1135
+ reordered_past = ()
1136
+ for layer_past in past_key_values:
1137
+ reordered_past += (
1138
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1139
+ )
1140
+ return reordered_past
1141
+
1142
+
1143
+ @add_start_docstrings(
1144
+ """
1145
+ The LLaMa Model transformer with a sequence classification head on top (linear layer).
1146
+
1147
+ [`SparseLlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1148
+ (e.g. GPT-2) do.
1149
+
1150
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1151
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1152
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1153
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1154
+ each row of the batch).
1155
+ """,
1156
+ LLAMA_START_DOCSTRING,
1157
+ )
1158
+ class SparseLlamaForSequenceClassification(SparseLlamaPreTrainedModel):
1159
+ def __init__(self, config):
1160
+ super().__init__(config)
1161
+ self.num_labels = config.num_labels
1162
+ self.model = SparseLlamaModel(config)
1163
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1164
+
1165
+ # Initialize weights and apply final processing
1166
+ self.post_init()
1167
+
1168
+ def get_input_embeddings(self):
1169
+ return self.model.embed_tokens
1170
+
1171
+ def set_input_embeddings(self, value):
1172
+ self.model.embed_tokens = value
1173
+
1174
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1175
+ def forward(
1176
+ self,
1177
+ input_ids: torch.LongTensor = None,
1178
+ attention_mask: Optional[torch.Tensor] = None,
1179
+ position_ids: Optional[torch.LongTensor] = None,
1180
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1181
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1182
+ labels: Optional[torch.LongTensor] = None,
1183
+ use_cache: Optional[bool] = None,
1184
+ output_attentions: Optional[bool] = None,
1185
+ output_hidden_states: Optional[bool] = None,
1186
+ return_dict: Optional[bool] = None,
1187
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1188
+ r"""
1189
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1190
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1191
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1192
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1193
+ """
1194
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1195
+
1196
+ transformer_outputs = self.model(
1197
+ input_ids,
1198
+ attention_mask=attention_mask,
1199
+ position_ids=position_ids,
1200
+ past_key_values=past_key_values,
1201
+ inputs_embeds=inputs_embeds,
1202
+ use_cache=use_cache,
1203
+ output_attentions=output_attentions,
1204
+ output_hidden_states=output_hidden_states,
1205
+ return_dict=return_dict,
1206
+ )
1207
+ hidden_states = transformer_outputs[0]
1208
+ logits = self.score(hidden_states)
1209
+
1210
+ if input_ids is not None:
1211
+ batch_size = input_ids.shape[0]
1212
+ else:
1213
+ batch_size = inputs_embeds.shape[0]
1214
+
1215
+ if self.config.pad_token_id is None and batch_size != 1:
1216
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1217
+ if self.config.pad_token_id is None:
1218
+ sequence_lengths = -1
1219
+ else:
1220
+ if input_ids is not None:
1221
+ sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).long().argmax(-1) - 1).to(
1222
+ logits.device
1223
+ )
1224
+ else:
1225
+ sequence_lengths = -1
1226
+
1227
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1228
+
1229
+ loss = None
1230
+ if labels is not None:
1231
+ labels = labels.to(logits.device)
1232
+ if self.config.problem_type is None:
1233
+ if self.num_labels == 1:
1234
+ self.config.problem_type = "regression"
1235
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1236
+ self.config.problem_type = "single_label_classification"
1237
+ else:
1238
+ self.config.problem_type = "multi_label_classification"
1239
+
1240
+ if self.config.problem_type == "regression":
1241
+ loss_fct = MSELoss()
1242
+ if self.num_labels == 1:
1243
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1244
+ else:
1245
+ loss = loss_fct(pooled_logits, labels)
1246
+ elif self.config.problem_type == "single_label_classification":
1247
+ loss_fct = CrossEntropyLoss()
1248
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1249
+ elif self.config.problem_type == "multi_label_classification":
1250
+ loss_fct = BCEWithLogitsLoss()
1251
+ loss = loss_fct(pooled_logits, labels)
1252
+ if not return_dict:
1253
+ output = (pooled_logits,) + transformer_outputs[1:]
1254
+ return ((loss,) + output) if loss is not None else output
1255
+
1256
+ return SequenceClassifierOutputWithPast(
1257
+ loss=loss,
1258
+ logits=pooled_logits,
1259
+ past_key_values=transformer_outputs.past_key_values,
1260
+ hidden_states=transformer_outputs.hidden_states,
1261
+ attentions=transformer_outputs.attentions,
1262
+ )
smash_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "api_key": null,
3
+ "verify_url": "http://johnrachwan.pythonanywhere.com",
4
+ "smash_config": {
5
+ "pruners": "None",
6
+ "pruning_ratio": 0.0,
7
+ "factorizers": "None",
8
+ "quantizers": "['llm-int8']",
9
+ "weight_quantization_bits": 8,
10
+ "output_deviation": 0.005,
11
+ "compilers": "None",
12
+ "static_batch": true,
13
+ "static_shape": true,
14
+ "controlnet": "None",
15
+ "unet_dim": 4,
16
+ "device": "cuda",
17
+ "cache_dir": "/ceph/hdd/staff/charpent/.cache/modelskmi7v46w",
18
+ "batch_size": 1,
19
+ "model_name": "SparseLLM/prosparse-llama-2-7b",
20
+ "task": "text_text_generation",
21
+ "max_batch_size": 1,
22
+ "qtype_weight": "torch.qint8",
23
+ "qtype_activation": "torch.quint8",
24
+ "qobserver": "<class 'torch.ao.quantization.observer.MinMaxObserver'>",
25
+ "qscheme": "torch.per_tensor_symmetric",
26
+ "qconfig": "x86",
27
+ "group_size": 128,
28
+ "damp_percent": 0.1,
29
+ "save_load_fn": "bitsandbytes"
30
+ }
31
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": false,
35
+ "model_max_length": 1000000000000000019884624838656,
36
+ "pad_token": null,
37
+ "padding_side": "right",
38
+ "sp_model_kwargs": {},
39
+ "spaces_between_special_tokens": false,
40
+ "tokenizer_class": "LlamaTokenizer",
41
+ "unk_token": "<unk>",
42
+ "use_default_system_prompt": false
43
+ }