import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from datasets import load_dataset from transformers import AutoTokenizer from tensor_network import FourDimensionalTransformer # Adjust based on your model's location # List of dataset identifiers dataset_ids = [ "prithivMLmods/Deepthink-Reasoning", "ewok-core/ewok-core-1.0", "MuskumPillerum/General-Knowledge", "fblgit/tree-of-knowledge", "CohereForAI/aya_dataset", "AtlasUnified/Atlas-Reasoning", "livebench/reasoning", "SkunkworksAI/reasoning-0.01", "KingNish/reasoning-base-20k", "RLHFlow/HH-RLHF-Helpful-standard", "yitingxie/rlhf-reward-datasets" ] # Load datasets datasets = [load_dataset(dataset_id) for dataset_id in dataset_ids] # Initialize tokenizer tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') # Replace with your model's tokenizer # Tokenize datasets def tokenize_function(examples): return tokenizer(examples['text'], padding='max_length', truncation=True, max_length=128) tokenized_datasets = [dataset.map(tokenize_function, batched=True) for dataset in datasets] # Prepare DataLoader def prepare_dataloader(dataset, batch_size=32): dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label']) return DataLoader(dataset, batch_size=batch_size, shuffle=True) train_dataloaders = [prepare_dataloader(dataset['train']) for dataset in tokenized_datasets] val_dataloaders = [prepare_dataloader(dataset['validation']) for dataset in tokenized_datasets] # Model setup model = FourDimensionalTransformer( num_layers=16, embed_dim=7, num_heads=1, num_extra_tokens=16, num_classes=10 # Adjust based on your specific task ) # Loss function and optimizer criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=1e-4) # Using Adam optimizer with a learning rate of 1e-4 # Training loop def train(model, train_dataloaders, val_dataloaders, num_epochs=10): for epoch in range(num_epochs): model.train() total_loss = 0 for dataloader in train_dataloaders: for batch in dataloader: input_ids = batch['input_ids'] attention_mask = batch['attention_mask'] labels = batch['label'] optimizer.zero_grad() outputs = model(input_ids, attention_mask) loss = criterion(outputs, labels) loss.backward() optimizer.step() total_loss += loss.item() avg_loss = total_loss / len(dataloader) print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {avg_loss:.4f}') # Validation model.eval() total_correct = 0 with torch.no_grad(): for dataloader in val_dataloaders: for batch in dataloader: input_ids = batch['input_ids'] attention_mask = batch['attention_mask'] labels = batch['label'] outputs = model(input_ids, attention_mask) _, predicted = torch.max(outputs, 1) total_correct += (predicted == labels).sum().item() accuracy = total_correct / len(dataloader.dataset) print(f'Validation Accuracy: {accuracy:.4f}') # Save the trained model torch.save(model.state_dict(), 'trained_model.pth') # Train the model train(model, train_dataloaders, val_dataloaders)