Update train_model.py
Browse files- train_model.py +100 -52
train_model.py
CHANGED
@@ -4,7 +4,12 @@ import torch.optim as optim
|
|
4 |
from torch.utils.data import DataLoader
|
5 |
from datasets import load_dataset
|
6 |
from transformers import AutoTokenizer
|
7 |
-
from
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# List of dataset identifiers
|
10 |
dataset_ids = [
|
@@ -21,55 +26,88 @@ dataset_ids = [
|
|
21 |
"yitingxie/rlhf-reward-datasets"
|
22 |
]
|
23 |
|
24 |
-
# Load datasets
|
25 |
-
datasets = [load_dataset(dataset_id) for dataset_id in dataset_ids]
|
26 |
-
|
27 |
# Initialize tokenizer
|
28 |
-
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
29 |
|
30 |
def tokenize_function(examples):
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
for k in
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
model = FourDimensionalTransformer(
|
67 |
num_layers=16,
|
68 |
embed_dim=7,
|
69 |
num_heads=1,
|
70 |
num_extra_tokens=16,
|
71 |
-
num_classes=10 #
|
72 |
-
)
|
73 |
|
74 |
# Loss function and optimizer
|
75 |
criterion = nn.CrossEntropyLoss()
|
@@ -79,22 +117,29 @@ def train(model, train_dataloaders, val_dataloaders, num_epochs=10):
|
|
79 |
for epoch in range(num_epochs):
|
80 |
model.train()
|
81 |
total_loss = 0
|
82 |
-
|
83 |
for dataloader in train_dataloaders:
|
84 |
for batch in dataloader:
|
85 |
input_ids = batch['input_ids']
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
optimizer.zero_grad()
|
90 |
-
outputs = model(input_ids
|
91 |
loss = criterion(outputs, labels)
|
92 |
loss.backward()
|
93 |
optimizer.step()
|
|
|
94 |
total_loss += loss.item()
|
|
|
95 |
|
96 |
-
|
97 |
-
avg_loss = total_loss / len(dataloader)
|
98 |
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {avg_loss:.4f}')
|
99 |
|
100 |
# Validation loop
|
@@ -105,16 +150,19 @@ def train(model, train_dataloaders, val_dataloaders, num_epochs=10):
|
|
105 |
for dataloader in val_dataloaders:
|
106 |
for batch in dataloader:
|
107 |
input_ids = batch['input_ids']
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
111 |
_, predicted = torch.max(outputs, 1)
|
112 |
total_correct += (predicted == labels).sum().item()
|
113 |
total_samples += labels.size(0)
|
114 |
accuracy = total_correct / total_samples if total_samples > 0 else 0
|
115 |
print(f'Validation Accuracy: {accuracy:.4f}')
|
116 |
|
117 |
-
# Save the trained model
|
118 |
torch.save(model.state_dict(), 'trained_model.pth')
|
119 |
|
120 |
# Start training
|
|
|
4 |
from torch.utils.data import DataLoader
|
5 |
from datasets import load_dataset
|
6 |
from transformers import AutoTokenizer
|
7 |
+
from sklearn.preprocessing import LabelEncoder
|
8 |
+
|
9 |
+
# Import your model from tensor_network.py
|
10 |
+
from tensor_network import FourDimensionalTransformer # Adjust the import path as needed
|
11 |
+
|
12 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
13 |
|
14 |
# List of dataset identifiers
|
15 |
dataset_ids = [
|
|
|
26 |
"yitingxie/rlhf-reward-datasets"
|
27 |
]
|
28 |
|
|
|
|
|
|
|
29 |
# Initialize tokenizer
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
31 |
|
32 |
def tokenize_function(examples):
|
33 |
+
possible_text_keys = ['text', 'content', 'question', 'passage', 'prompt', 'input']
|
34 |
+
possible_label_keys = ['label', 'answer', 'response', 'output', 'target']
|
35 |
+
|
36 |
+
text_key = next((k for k in possible_text_keys if k in examples), None)
|
37 |
+
if text_key is None:
|
38 |
+
text_key = list(examples.keys())[0]
|
39 |
+
|
40 |
+
label_key = next((k for k in possible_label_keys if k in examples), None)
|
41 |
+
if label_key is None:
|
42 |
+
labels = [0] * len(examples[text_key]) # Default label
|
43 |
+
else:
|
44 |
+
labels = examples[label_key]
|
45 |
+
|
46 |
+
texts = [str(t) for t in examples[text_key]]
|
47 |
+
tokenized_inputs = tokenizer(texts, padding='max_length', truncation=True, max_length=48)
|
48 |
+
tokenized_inputs['labels'] = labels
|
49 |
+
return tokenized_inputs
|
50 |
+
|
51 |
+
# Initialize LabelEncoder
|
52 |
+
label_encoder = LabelEncoder()
|
53 |
+
all_labels = []
|
54 |
+
|
55 |
+
# Process each dataset individually
|
56 |
+
tokenized_datasets = []
|
57 |
+
for dataset_id in dataset_ids:
|
58 |
+
try:
|
59 |
+
dataset = load_dataset(dataset_id)
|
60 |
+
tokenized_dataset = dataset.map(tokenize_function, batched=True)
|
61 |
+
|
62 |
+
# Collect labels for label encoding
|
63 |
+
for split in tokenized_dataset.keys():
|
64 |
+
if 'labels' in tokenized_dataset[split].features:
|
65 |
+
all_labels.extend(tokenized_dataset[split]['labels'])
|
66 |
+
|
67 |
+
tokenized_datasets.append(tokenized_dataset)
|
68 |
+
except Exception as e:
|
69 |
+
print(f"Could not process dataset {dataset_id}: {e}")
|
70 |
+
|
71 |
+
# Fit label encoder
|
72 |
+
label_encoder.fit(all_labels)
|
73 |
+
num_classes = len(label_encoder.classes_)
|
74 |
+
print(f"Number of unique labels: {num_classes}")
|
75 |
+
|
76 |
+
if num_classes > 10:
|
77 |
+
print("Warning: Number of unique labels exceeds the number of classes. Adjusting the dataset or model is required.")
|
78 |
+
exit()
|
79 |
+
|
80 |
+
# Transform labels in each dataset
|
81 |
+
for dataset in tokenized_datasets:
|
82 |
+
for split in dataset.keys():
|
83 |
+
if 'labels' in dataset[split].features:
|
84 |
+
dataset[split] = dataset[split].map(
|
85 |
+
lambda examples: {'labels': label_encoder.transform(examples['labels'])},
|
86 |
+
batched=True
|
87 |
+
)
|
88 |
+
|
89 |
+
# Prepare DataLoaders
|
90 |
+
def prepare_dataloader(dataset_splits, split_name, batch_size=2):
|
91 |
+
dataloaders = []
|
92 |
+
for dataset in dataset_splits:
|
93 |
+
if split_name in dataset:
|
94 |
+
dataset_split = dataset[split_name]
|
95 |
+
dataset_split.set_format(type='torch', columns=['input_ids', 'labels'])
|
96 |
+
dataloader = DataLoader(dataset_split, batch_size=batch_size, shuffle=True)
|
97 |
+
dataloaders.append(dataloader)
|
98 |
+
return dataloaders
|
99 |
+
|
100 |
+
train_dataloaders = prepare_dataloader(tokenized_datasets, 'train')
|
101 |
+
val_dataloaders = prepare_dataloader(tokenized_datasets, 'validation')
|
102 |
+
|
103 |
+
# Initialize the model
|
104 |
model = FourDimensionalTransformer(
|
105 |
num_layers=16,
|
106 |
embed_dim=7,
|
107 |
num_heads=1,
|
108 |
num_extra_tokens=16,
|
109 |
+
num_classes=10 # Using 10 classes as per your model
|
110 |
+
).to(device)
|
111 |
|
112 |
# Loss function and optimizer
|
113 |
criterion = nn.CrossEntropyLoss()
|
|
|
117 |
for epoch in range(num_epochs):
|
118 |
model.train()
|
119 |
total_loss = 0
|
120 |
+
total_batches = 0
|
121 |
for dataloader in train_dataloaders:
|
122 |
for batch in dataloader:
|
123 |
input_ids = batch['input_ids']
|
124 |
+
labels = batch['labels']
|
125 |
+
|
126 |
+
# Reshape input_ids and move to device
|
127 |
+
input_ids = input_ids[:, :48] # Ensure length is 48
|
128 |
+
input_ids = input_ids.view(-1, 3, 4, 4).float().to(device)
|
129 |
+
|
130 |
+
# Convert labels to torch.long and move to device
|
131 |
+
labels = labels.type(torch.long).to(device)
|
132 |
|
133 |
optimizer.zero_grad()
|
134 |
+
outputs = model(input_ids)
|
135 |
loss = criterion(outputs, labels)
|
136 |
loss.backward()
|
137 |
optimizer.step()
|
138 |
+
|
139 |
total_loss += loss.item()
|
140 |
+
total_batches += 1
|
141 |
|
142 |
+
avg_loss = total_loss / total_batches if total_batches > 0 else 0
|
|
|
143 |
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {avg_loss:.4f}')
|
144 |
|
145 |
# Validation loop
|
|
|
150 |
for dataloader in val_dataloaders:
|
151 |
for batch in dataloader:
|
152 |
input_ids = batch['input_ids']
|
153 |
+
labels = batch['labels']
|
154 |
+
|
155 |
+
input_ids = input_ids[:, :48] # Ensure length is 48
|
156 |
+
input_ids = input_ids.view(-1, 3, 4, 4).float().to(device)
|
157 |
+
labels = labels.type(torch.long).to(device)
|
158 |
+
|
159 |
+
outputs = model(input_ids)
|
160 |
_, predicted = torch.max(outputs, 1)
|
161 |
total_correct += (predicted == labels).sum().item()
|
162 |
total_samples += labels.size(0)
|
163 |
accuracy = total_correct / total_samples if total_samples > 0 else 0
|
164 |
print(f'Validation Accuracy: {accuracy:.4f}')
|
165 |
|
|
|
166 |
torch.save(model.state_dict(), 'trained_model.pth')
|
167 |
|
168 |
# Start training
|