# text_generation.py import torch import torch.nn as nn class YourTextGenerationModel(nn.Module): def __init__(self, vocab_size, embedding_dim, hidden_dim): super(YourTextGenerationModel, self).__init__() self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, batch_first=True) self.linear = nn.Linear(hidden_dim, vocab_size) def forward(self, x): embedded = self.embedding(x) lstm_out, _ = self.lstm(embedded) output = self.linear(lstm_out) return output def generate_text(self, prompt): # Your text generation logic here # Replace this with your actual text generation code generated_text = "Generated text for: " + prompt return generated_text if __name__ == "__main__": # Example usage of your text generation model vocab_size = 10000 # Replace with your actual vocabulary size embedding_dim = 128 # Replace with your desired embedding dimension hidden_dim = 256 # Replace with your desired hidden dimension your_model = YourTextGenerationModel(vocab_size, embedding_dim, hidden_dim) prompt = "Once upon a time" generated_text = your_model.generate_text(prompt) print("Input Prompt:", prompt) print("Generated Text:", generated_text)