# my_text_to_text_dataset.py from datasets import Dataset from text_generation import YourTextGenerationModel def generate_text_to_text_data(): # Your data generation logic here prompts = ["Tell a story about", "Describe a scene with", "Explain the concept of"] vocab_size = 10000 # Replace with your actual vocabulary size embedding_dim = 128 # Replace with your desired embedding dimension hidden_dim = 256 # Replace with your desired hidden dimension your_model = YourTextGenerationModel(vocab_size, embedding_dim, hidden_dim) generated_texts = [your_model.generate_text(prompt) for prompt in prompts] data = { "input_text": prompts, "target_text": generated_texts } return data def create_text_to_text_huggingface_dataset(): data = generate_text_to_text_data() dataset = Dataset.from_dict(data) return dataset if __name__ == "__main__": text_to_text_huggingface_dataset = create_text_to_text_huggingface_dataset() text_to_text_huggingface_dataset.save_to_disk("my_text_to_text_dataset")