import tensorflow as tf # Improved training corpus with more data and variety corpus = """ The quick brown fox jumps over the lazy dog. Machine learning is the study of algorithms that can learn from data. Natural language processing is a subfield of artificial intelligence concerned with the interactions between computers and human language. Deep learning is a class of machine learning algorithms that use multiple layers of artificial neural networks to learn from data. """ # Tokenization and vectorization (one-hot encoding for simplicity) tokens = corpus.split() vocab_size = len(set(tokens)) token_vectors = tf.one_hot(tf.strings.lookup(tokens, tf.constant([0] * vocab_size)), vocab_size) # Model architecture with embedding, LSTM layers, and dense output model = tf.keras.Sequential([ tf.keras.layers.Embedding(vocab_size, 8), # Embedding layer tf.keras.layers.LSTM(16, return_sequences=True), # Recurrent LSTM layer tf.keras.layers.LSTM(16), tf.keras.layers.Dense(vocab_size) # Output layer ]) # Compile the model with categorical crossentropy loss and Adam optimizer model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) # Train the model for a limited number of epochs (adjust as needed) model.fit(token_vectors[:-1], token_vectors[1:], epochs=20) # Generate text starting with "The" prompt_vector = tf.one_hot(tf.constant([tokens.index("The")]), vocab_size) for i in range(10): prediction = model.predict(tf.expand_dims(prompt_vector, axis=0)) predicted_index = tf.argmax(prediction, axis=1).numpy()[0] prompt_vector = tf.concat([prompt_vector, tf.one_hot([predicted_index], vocab_size)], axis=0) print(tokens[predicted_index], end=" ")