--- language: en tags: - clip - vision - transformers - interpretability - sparse autoencoder - sae - mechanistic interpretability license: apache-2.0 library_name: torch pipeline_tag: feature-extraction metrics: - type: explained_variance value: 89.8 pretty_name: Explained Variance % range: min: 0 max: 100 - type: l0 value: 747.736 pretty_name: L0 --- # CLIP-B-32 Sparse Autoencoder x64 vanilla - L1:5e-05 ![Explained Variance](https://img.shields.io/badge/Explained%20Variance-89.8%25-blue) ![Sparsity](https://img.shields.io/badge/Active%20Features-74773.6%-green) ### Training Details - Base Model: CLIP-ViT-B-32 (LAION DataComp.XL-s13B-b90K) - Layer: 11 - Component: hook_mlp_out ### Model Architecture - Input Dimension: 768 - SAE Dimension: 49,152 - Expansion Factor: x64 (vanilla architecture) - Activation Function: ReLU - Initialization: encoder_transpose_decoder - Context Size: 50 tokens ### Performance Metrics - L1 Coefficient: 5e-05 - L0 Sparsity: 747.7365 - Explained Variance: 0.8976 (89.76%) ### Training Configuration - Learning Rate: 0.0004 - LR Scheduler: Cosine Annealing with Warmup (200 steps) - Epochs: 10 - Gradient Clipping: 1.0 - Device: NVIDIA Quadro RTX 8000 **Experiment Tracking:** - Weights & Biases Run ID: fovh61fn - Full experiment details: https://wandb.ai/perceptual-alignment/clip/runs/fovh61fn/overview - Git Commit: e22dd02726b74a054a779a4805b96059d83244aa ## Citation ```bibtex @misc{2024josephsparseautoencoders, title={Sparse Autoencoders for CLIP-ViT-B-32}, author={Joseph, Sonia}, year={2024}, publisher={Prisma-Multimodal}, url={https://huggingface.co/Prisma-Multimodal}, note={Layer 11, hook_mlp_out, Run ID: fovh61fn} }