root
commited on
Commit
•
59bec0a
1
Parent(s):
09c3d85
add custom pipeline
Browse files- distilbert-base-uncased-emotion +1 -0
- handler.py +44 -0
distilbert-base-uncased-emotion
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Subproject commit d12ff2a4b521b7bfd526aa7055665815c67e113b
|
handler.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, Any
|
2 |
+
from transformers import pipeline
|
3 |
+
import holidays
|
4 |
+
import PIL.Image
|
5 |
+
import io
|
6 |
+
import pytesseract
|
7 |
+
|
8 |
+
class PreTrainedPipeline():
|
9 |
+
def __init__(self, model_path="PrimWong/layout_qa_hparam_tuning"):
|
10 |
+
# Initializing the document-question-answering pipeline with the specified model
|
11 |
+
self.pipeline = pipeline("document-question-answering", model=model_path)
|
12 |
+
self.holidays = holidays.US()
|
13 |
+
|
14 |
+
def __call__(self, data: Dict[str, Any]) -> str:
|
15 |
+
"""
|
16 |
+
Process input data for document question answering with optional holiday checking.
|
17 |
+
|
18 |
+
Args:
|
19 |
+
data (Dict[str, Any]): Input data containing an 'inputs' field with 'image' and 'question',
|
20 |
+
and optionally a 'date' field.
|
21 |
+
|
22 |
+
Returns:
|
23 |
+
str: The answer to the question or a holiday message if applicable.
|
24 |
+
"""
|
25 |
+
inputs = data.get('inputs', {})
|
26 |
+
date = data.get("date")
|
27 |
+
|
28 |
+
# Check if date is provided and if it's a holiday
|
29 |
+
if date and date in self.holidays:
|
30 |
+
return "Today is a holiday!"
|
31 |
+
|
32 |
+
# Process the image and question for document question answering
|
33 |
+
image_path = inputs.get("image")
|
34 |
+
question = inputs.get("question")
|
35 |
+
|
36 |
+
# Load and process an image
|
37 |
+
image = PIL.Image.open(image_path)
|
38 |
+
image_text = pytesseract.image_to_string(image) # Use OCR to extract text
|
39 |
+
|
40 |
+
# Run prediction (Note: this now uses the extracted text, not the image directly)
|
41 |
+
prediction = self.pipeline(question=question, context=image_text)
|
42 |
+
return prediction["answer"] # Adjust based on actual output format of the model
|
43 |
+
|
44 |
+
# Note: This script assumes the use of pytesseract for OCR to process images. Ensure pytesseract is configured properly.
|