root
commited on
Commit
·
59bec0a
1
Parent(s):
09c3d85
add custom pipeline
Browse files- distilbert-base-uncased-emotion +1 -0
- handler.py +44 -0
distilbert-base-uncased-emotion
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
Subproject commit d12ff2a4b521b7bfd526aa7055665815c67e113b
|
handler.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, Any
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
import holidays
|
| 4 |
+
import PIL.Image
|
| 5 |
+
import io
|
| 6 |
+
import pytesseract
|
| 7 |
+
|
| 8 |
+
class PreTrainedPipeline():
|
| 9 |
+
def __init__(self, model_path="PrimWong/layout_qa_hparam_tuning"):
|
| 10 |
+
# Initializing the document-question-answering pipeline with the specified model
|
| 11 |
+
self.pipeline = pipeline("document-question-answering", model=model_path)
|
| 12 |
+
self.holidays = holidays.US()
|
| 13 |
+
|
| 14 |
+
def __call__(self, data: Dict[str, Any]) -> str:
|
| 15 |
+
"""
|
| 16 |
+
Process input data for document question answering with optional holiday checking.
|
| 17 |
+
|
| 18 |
+
Args:
|
| 19 |
+
data (Dict[str, Any]): Input data containing an 'inputs' field with 'image' and 'question',
|
| 20 |
+
and optionally a 'date' field.
|
| 21 |
+
|
| 22 |
+
Returns:
|
| 23 |
+
str: The answer to the question or a holiday message if applicable.
|
| 24 |
+
"""
|
| 25 |
+
inputs = data.get('inputs', {})
|
| 26 |
+
date = data.get("date")
|
| 27 |
+
|
| 28 |
+
# Check if date is provided and if it's a holiday
|
| 29 |
+
if date and date in self.holidays:
|
| 30 |
+
return "Today is a holiday!"
|
| 31 |
+
|
| 32 |
+
# Process the image and question for document question answering
|
| 33 |
+
image_path = inputs.get("image")
|
| 34 |
+
question = inputs.get("question")
|
| 35 |
+
|
| 36 |
+
# Load and process an image
|
| 37 |
+
image = PIL.Image.open(image_path)
|
| 38 |
+
image_text = pytesseract.image_to_string(image) # Use OCR to extract text
|
| 39 |
+
|
| 40 |
+
# Run prediction (Note: this now uses the extracted text, not the image directly)
|
| 41 |
+
prediction = self.pipeline(question=question, context=image_text)
|
| 42 |
+
return prediction["answer"] # Adjust based on actual output format of the model
|
| 43 |
+
|
| 44 |
+
# Note: This script assumes the use of pytesseract for OCR to process images. Ensure pytesseract is configured properly.
|