--- license: apache-2.0 pipeline_tag: image-segmentation tags: - BEN - background-remove - mask-generation - Dichotomous image segmentation - background remove - foreground - background --- # BEN - Background Erase Network (Beta Base Model) BEN is a deep learning model designed to automatically remove backgrounds from images, producing both a mask and a foreground image. - MADE IN AMERICA ## Quick Start Code ```python from BEN import model from PIL import Image import torch device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') file = "./image2.jpg" # input image model = model.BEN_Base().to(device).eval() #init pipeline model.loadcheckpoints("./BEN/BEN_Base.pth") image = Image.open(file) mask, foreground = model.inference(image) mask.save("./mask.png") foreground.save("./foreground.png") ``` # BEN SOA Benchmarks on Disk 5k Eval ![Demo Results](demo.jpg) ### BEN_Base + BEN_Refiner (commercial model please contact us for more information): - MAE: 0.0283 - DICE: 0.8976 - IOU: 0.8430 - BER: 0.0542 - ACC: 0.9725 ### BEN_Base (94 million parameters): - MAE: 0.0331 - DICE: 0.8743 - IOU: 0.8301 - BER: 0.0560 - ACC: 0.9700 ### MVANet (old SOTA): - MAE: 0.0353 - DICE: 0.8676 - IOU: 0.8104 - BER: 0.0639 - ACC: 0.9660 ### BiRefNet(not tested in house): - MAE: 0.038 ### InSPyReNet (not tested in house): - MAE: 0.042 ## Features - Background removal from images - Generates both binary mask and foreground image - CUDA support for GPU acceleration - Simple API for easy integration ## Installation 1. Clone Repo 2. Install requirements.txt