Upload 3 files
Browse files- NumPy_Library_Basics.ipynb +1116 -0
- README.md +29 -0
- numpy.png +0 -0
NumPy_Library_Basics.ipynb
ADDED
@@ -0,0 +1,1116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"### Load in NumPy (remember to pip install numpy first)"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "code",
|
12 |
+
"execution_count": 1,
|
13 |
+
"metadata": {},
|
14 |
+
"outputs": [],
|
15 |
+
"source": [
|
16 |
+
"import numpy as np"
|
17 |
+
]
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"cell_type": "markdown",
|
21 |
+
"metadata": {},
|
22 |
+
"source": [
|
23 |
+
"### The Basics"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"execution_count": 2,
|
29 |
+
"metadata": {},
|
30 |
+
"outputs": [
|
31 |
+
{
|
32 |
+
"name": "stdout",
|
33 |
+
"output_type": "stream",
|
34 |
+
"text": [
|
35 |
+
"[1 2 3]\n"
|
36 |
+
]
|
37 |
+
}
|
38 |
+
],
|
39 |
+
"source": [
|
40 |
+
"a = np.array([1,2,3], dtype='int32')\n",
|
41 |
+
"print(a)"
|
42 |
+
]
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"cell_type": "code",
|
46 |
+
"execution_count": 3,
|
47 |
+
"metadata": {},
|
48 |
+
"outputs": [
|
49 |
+
{
|
50 |
+
"name": "stdout",
|
51 |
+
"output_type": "stream",
|
52 |
+
"text": [
|
53 |
+
"[[9. 8. 7.]\n",
|
54 |
+
" [6. 5. 4.]]\n"
|
55 |
+
]
|
56 |
+
}
|
57 |
+
],
|
58 |
+
"source": [
|
59 |
+
"b = np.array([[9.0,8.0,7.0],[6.0,5.0,4.0]])\n",
|
60 |
+
"print(b)"
|
61 |
+
]
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"cell_type": "code",
|
65 |
+
"execution_count": 4,
|
66 |
+
"metadata": {},
|
67 |
+
"outputs": [
|
68 |
+
{
|
69 |
+
"data": {
|
70 |
+
"text/plain": [
|
71 |
+
"1"
|
72 |
+
]
|
73 |
+
},
|
74 |
+
"execution_count": 4,
|
75 |
+
"metadata": {},
|
76 |
+
"output_type": "execute_result"
|
77 |
+
}
|
78 |
+
],
|
79 |
+
"source": [
|
80 |
+
"# Get Dimension\n",
|
81 |
+
"a.ndim"
|
82 |
+
]
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"cell_type": "code",
|
86 |
+
"execution_count": 5,
|
87 |
+
"metadata": {},
|
88 |
+
"outputs": [
|
89 |
+
{
|
90 |
+
"data": {
|
91 |
+
"text/plain": [
|
92 |
+
"(2, 3)"
|
93 |
+
]
|
94 |
+
},
|
95 |
+
"execution_count": 5,
|
96 |
+
"metadata": {},
|
97 |
+
"output_type": "execute_result"
|
98 |
+
}
|
99 |
+
],
|
100 |
+
"source": [
|
101 |
+
"# Get Shape\n",
|
102 |
+
"b.shape"
|
103 |
+
]
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"cell_type": "code",
|
107 |
+
"execution_count": 6,
|
108 |
+
"metadata": {},
|
109 |
+
"outputs": [
|
110 |
+
{
|
111 |
+
"data": {
|
112 |
+
"text/plain": [
|
113 |
+
"dtype('int32')"
|
114 |
+
]
|
115 |
+
},
|
116 |
+
"execution_count": 6,
|
117 |
+
"metadata": {},
|
118 |
+
"output_type": "execute_result"
|
119 |
+
}
|
120 |
+
],
|
121 |
+
"source": [
|
122 |
+
"# Get Type\n",
|
123 |
+
"a.dtype"
|
124 |
+
]
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"cell_type": "code",
|
128 |
+
"execution_count": 7,
|
129 |
+
"metadata": {},
|
130 |
+
"outputs": [
|
131 |
+
{
|
132 |
+
"data": {
|
133 |
+
"text/plain": [
|
134 |
+
"4"
|
135 |
+
]
|
136 |
+
},
|
137 |
+
"execution_count": 7,
|
138 |
+
"metadata": {},
|
139 |
+
"output_type": "execute_result"
|
140 |
+
}
|
141 |
+
],
|
142 |
+
"source": [
|
143 |
+
"# Get Size\n",
|
144 |
+
"a.itemsize"
|
145 |
+
]
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"cell_type": "code",
|
149 |
+
"execution_count": 8,
|
150 |
+
"metadata": {},
|
151 |
+
"outputs": [
|
152 |
+
{
|
153 |
+
"data": {
|
154 |
+
"text/plain": [
|
155 |
+
"12"
|
156 |
+
]
|
157 |
+
},
|
158 |
+
"execution_count": 8,
|
159 |
+
"metadata": {},
|
160 |
+
"output_type": "execute_result"
|
161 |
+
}
|
162 |
+
],
|
163 |
+
"source": [
|
164 |
+
"# Get total size\n",
|
165 |
+
"a.nbytes"
|
166 |
+
]
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"cell_type": "code",
|
170 |
+
"execution_count": 9,
|
171 |
+
"metadata": {},
|
172 |
+
"outputs": [
|
173 |
+
{
|
174 |
+
"data": {
|
175 |
+
"text/plain": [
|
176 |
+
"3"
|
177 |
+
]
|
178 |
+
},
|
179 |
+
"execution_count": 9,
|
180 |
+
"metadata": {},
|
181 |
+
"output_type": "execute_result"
|
182 |
+
}
|
183 |
+
],
|
184 |
+
"source": [
|
185 |
+
"# Get number of elements\n",
|
186 |
+
"a.size"
|
187 |
+
]
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"cell_type": "markdown",
|
191 |
+
"metadata": {},
|
192 |
+
"source": [
|
193 |
+
"### Accessing/Changing specific elements, rows, columns, etc"
|
194 |
+
]
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"cell_type": "code",
|
198 |
+
"execution_count": 10,
|
199 |
+
"metadata": {},
|
200 |
+
"outputs": [
|
201 |
+
{
|
202 |
+
"name": "stdout",
|
203 |
+
"output_type": "stream",
|
204 |
+
"text": [
|
205 |
+
"[[ 1 2 3 4 5 6 7]\n",
|
206 |
+
" [ 8 9 10 11 12 13 14]]\n"
|
207 |
+
]
|
208 |
+
}
|
209 |
+
],
|
210 |
+
"source": [
|
211 |
+
"a = np.array([[1,2,3,4,5,6,7],[8,9,10,11,12,13,14]])\n",
|
212 |
+
"print(a)"
|
213 |
+
]
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"cell_type": "code",
|
217 |
+
"execution_count": 11,
|
218 |
+
"metadata": {},
|
219 |
+
"outputs": [
|
220 |
+
{
|
221 |
+
"data": {
|
222 |
+
"text/plain": [
|
223 |
+
"13"
|
224 |
+
]
|
225 |
+
},
|
226 |
+
"execution_count": 11,
|
227 |
+
"metadata": {},
|
228 |
+
"output_type": "execute_result"
|
229 |
+
}
|
230 |
+
],
|
231 |
+
"source": [
|
232 |
+
"# Get a specific element [r, c]\n",
|
233 |
+
"a[1, 5]"
|
234 |
+
]
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"cell_type": "code",
|
238 |
+
"execution_count": 12,
|
239 |
+
"metadata": {},
|
240 |
+
"outputs": [
|
241 |
+
{
|
242 |
+
"data": {
|
243 |
+
"text/plain": [
|
244 |
+
"array([1, 2, 3, 4, 5, 6, 7])"
|
245 |
+
]
|
246 |
+
},
|
247 |
+
"execution_count": 12,
|
248 |
+
"metadata": {},
|
249 |
+
"output_type": "execute_result"
|
250 |
+
}
|
251 |
+
],
|
252 |
+
"source": [
|
253 |
+
"# Get a specific row \n",
|
254 |
+
"a[0, :]"
|
255 |
+
]
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"cell_type": "code",
|
259 |
+
"execution_count": 13,
|
260 |
+
"metadata": {},
|
261 |
+
"outputs": [
|
262 |
+
{
|
263 |
+
"data": {
|
264 |
+
"text/plain": [
|
265 |
+
"array([ 3, 10])"
|
266 |
+
]
|
267 |
+
},
|
268 |
+
"execution_count": 13,
|
269 |
+
"metadata": {},
|
270 |
+
"output_type": "execute_result"
|
271 |
+
}
|
272 |
+
],
|
273 |
+
"source": [
|
274 |
+
"# Get a specific column\n",
|
275 |
+
"a[:, 2]"
|
276 |
+
]
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"cell_type": "code",
|
280 |
+
"execution_count": 14,
|
281 |
+
"metadata": {},
|
282 |
+
"outputs": [
|
283 |
+
{
|
284 |
+
"data": {
|
285 |
+
"text/plain": [
|
286 |
+
"array([2, 4, 6])"
|
287 |
+
]
|
288 |
+
},
|
289 |
+
"execution_count": 14,
|
290 |
+
"metadata": {},
|
291 |
+
"output_type": "execute_result"
|
292 |
+
}
|
293 |
+
],
|
294 |
+
"source": [
|
295 |
+
"# Getting a little more fancy [startindex:endindex:stepsize]\n",
|
296 |
+
"a[0, 1:-1:2]"
|
297 |
+
]
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"cell_type": "code",
|
301 |
+
"execution_count": 15,
|
302 |
+
"metadata": {},
|
303 |
+
"outputs": [
|
304 |
+
{
|
305 |
+
"name": "stdout",
|
306 |
+
"output_type": "stream",
|
307 |
+
"text": [
|
308 |
+
"[[ 1 2 1 4 5 6 7]\n",
|
309 |
+
" [ 8 9 2 11 12 20 14]]\n"
|
310 |
+
]
|
311 |
+
}
|
312 |
+
],
|
313 |
+
"source": [
|
314 |
+
"a[1,5] = 20\n",
|
315 |
+
"\n",
|
316 |
+
"a[:,2] = [1,2]\n",
|
317 |
+
"print(a)"
|
318 |
+
]
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"cell_type": "markdown",
|
322 |
+
"metadata": {},
|
323 |
+
"source": [
|
324 |
+
"*3-d example"
|
325 |
+
]
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"cell_type": "code",
|
329 |
+
"execution_count": 16,
|
330 |
+
"metadata": {},
|
331 |
+
"outputs": [
|
332 |
+
{
|
333 |
+
"name": "stdout",
|
334 |
+
"output_type": "stream",
|
335 |
+
"text": [
|
336 |
+
"[[[1 2]\n",
|
337 |
+
" [3 4]]\n",
|
338 |
+
"\n",
|
339 |
+
" [[5 6]\n",
|
340 |
+
" [7 8]]]\n"
|
341 |
+
]
|
342 |
+
}
|
343 |
+
],
|
344 |
+
"source": [
|
345 |
+
"b = np.array([[[1,2],[3,4]],[[5,6],[7,8]]])\n",
|
346 |
+
"print(b)"
|
347 |
+
]
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"cell_type": "code",
|
351 |
+
"execution_count": 17,
|
352 |
+
"metadata": {},
|
353 |
+
"outputs": [
|
354 |
+
{
|
355 |
+
"data": {
|
356 |
+
"text/plain": [
|
357 |
+
"4"
|
358 |
+
]
|
359 |
+
},
|
360 |
+
"execution_count": 17,
|
361 |
+
"metadata": {},
|
362 |
+
"output_type": "execute_result"
|
363 |
+
}
|
364 |
+
],
|
365 |
+
"source": [
|
366 |
+
"# Get specific element (work outside in)\n",
|
367 |
+
"b[0,1,1]"
|
368 |
+
]
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"cell_type": "code",
|
372 |
+
"execution_count": 19,
|
373 |
+
"metadata": {},
|
374 |
+
"outputs": [],
|
375 |
+
"source": [
|
376 |
+
"# replace \n",
|
377 |
+
"b[:,1,:] = [[9,9],[8,8]]"
|
378 |
+
]
|
379 |
+
},
|
380 |
+
{
|
381 |
+
"cell_type": "code",
|
382 |
+
"execution_count": 20,
|
383 |
+
"metadata": {},
|
384 |
+
"outputs": [
|
385 |
+
{
|
386 |
+
"data": {
|
387 |
+
"text/plain": [
|
388 |
+
"array([[[1, 2],\n",
|
389 |
+
" [9, 9]],\n",
|
390 |
+
"\n",
|
391 |
+
" [[5, 6],\n",
|
392 |
+
" [8, 8]]])"
|
393 |
+
]
|
394 |
+
},
|
395 |
+
"execution_count": 20,
|
396 |
+
"metadata": {},
|
397 |
+
"output_type": "execute_result"
|
398 |
+
}
|
399 |
+
],
|
400 |
+
"source": [
|
401 |
+
"b"
|
402 |
+
]
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"cell_type": "markdown",
|
406 |
+
"metadata": {},
|
407 |
+
"source": [
|
408 |
+
"### Initializing Different Types of Arrays"
|
409 |
+
]
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"cell_type": "code",
|
413 |
+
"execution_count": 21,
|
414 |
+
"metadata": {},
|
415 |
+
"outputs": [
|
416 |
+
{
|
417 |
+
"data": {
|
418 |
+
"text/plain": [
|
419 |
+
"array([[0., 0., 0.],\n",
|
420 |
+
" [0., 0., 0.]])"
|
421 |
+
]
|
422 |
+
},
|
423 |
+
"execution_count": 21,
|
424 |
+
"metadata": {},
|
425 |
+
"output_type": "execute_result"
|
426 |
+
}
|
427 |
+
],
|
428 |
+
"source": [
|
429 |
+
"# All 0s matrix\n",
|
430 |
+
"np.zeros((2,3))"
|
431 |
+
]
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"cell_type": "code",
|
435 |
+
"execution_count": 22,
|
436 |
+
"metadata": {},
|
437 |
+
"outputs": [
|
438 |
+
{
|
439 |
+
"data": {
|
440 |
+
"text/plain": [
|
441 |
+
"array([[[1, 1],\n",
|
442 |
+
" [1, 1]],\n",
|
443 |
+
"\n",
|
444 |
+
" [[1, 1],\n",
|
445 |
+
" [1, 1]],\n",
|
446 |
+
"\n",
|
447 |
+
" [[1, 1],\n",
|
448 |
+
" [1, 1]],\n",
|
449 |
+
"\n",
|
450 |
+
" [[1, 1],\n",
|
451 |
+
" [1, 1]]])"
|
452 |
+
]
|
453 |
+
},
|
454 |
+
"execution_count": 22,
|
455 |
+
"metadata": {},
|
456 |
+
"output_type": "execute_result"
|
457 |
+
}
|
458 |
+
],
|
459 |
+
"source": [
|
460 |
+
"# All 1s matrix\n",
|
461 |
+
"np.ones((4,2,2), dtype='int32')"
|
462 |
+
]
|
463 |
+
},
|
464 |
+
{
|
465 |
+
"cell_type": "code",
|
466 |
+
"execution_count": 23,
|
467 |
+
"metadata": {},
|
468 |
+
"outputs": [
|
469 |
+
{
|
470 |
+
"data": {
|
471 |
+
"text/plain": [
|
472 |
+
"array([[99, 99],\n",
|
473 |
+
" [99, 99]])"
|
474 |
+
]
|
475 |
+
},
|
476 |
+
"execution_count": 23,
|
477 |
+
"metadata": {},
|
478 |
+
"output_type": "execute_result"
|
479 |
+
}
|
480 |
+
],
|
481 |
+
"source": [
|
482 |
+
"# Any other number\n",
|
483 |
+
"np.full((2,2), 99)"
|
484 |
+
]
|
485 |
+
},
|
486 |
+
{
|
487 |
+
"cell_type": "code",
|
488 |
+
"execution_count": 24,
|
489 |
+
"metadata": {},
|
490 |
+
"outputs": [
|
491 |
+
{
|
492 |
+
"data": {
|
493 |
+
"text/plain": [
|
494 |
+
"array([[4, 4, 4, 4, 4, 4, 4],\n",
|
495 |
+
" [4, 4, 4, 4, 4, 4, 4]])"
|
496 |
+
]
|
497 |
+
},
|
498 |
+
"execution_count": 24,
|
499 |
+
"metadata": {},
|
500 |
+
"output_type": "execute_result"
|
501 |
+
}
|
502 |
+
],
|
503 |
+
"source": [
|
504 |
+
"# Any other number (full_like)\n",
|
505 |
+
"np.full_like(a, 4)"
|
506 |
+
]
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"cell_type": "code",
|
510 |
+
"execution_count": 25,
|
511 |
+
"metadata": {},
|
512 |
+
"outputs": [
|
513 |
+
{
|
514 |
+
"data": {
|
515 |
+
"text/plain": [
|
516 |
+
"array([[0.24480678, 0.71347348],\n",
|
517 |
+
" [0.56163517, 0.80732991],\n",
|
518 |
+
" [0.72750015, 0.65200353],\n",
|
519 |
+
" [0.13660036, 0.92045687]])"
|
520 |
+
]
|
521 |
+
},
|
522 |
+
"execution_count": 25,
|
523 |
+
"metadata": {},
|
524 |
+
"output_type": "execute_result"
|
525 |
+
}
|
526 |
+
],
|
527 |
+
"source": [
|
528 |
+
"# Random decimal numbers\n",
|
529 |
+
"np.random.rand(4,2)"
|
530 |
+
]
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"cell_type": "code",
|
534 |
+
"execution_count": 26,
|
535 |
+
"metadata": {},
|
536 |
+
"outputs": [
|
537 |
+
{
|
538 |
+
"data": {
|
539 |
+
"text/plain": [
|
540 |
+
"array([[-4, 2, 6],\n",
|
541 |
+
" [ 6, -4, -3],\n",
|
542 |
+
" [ 3, 2, 4]])"
|
543 |
+
]
|
544 |
+
},
|
545 |
+
"execution_count": 26,
|
546 |
+
"metadata": {},
|
547 |
+
"output_type": "execute_result"
|
548 |
+
}
|
549 |
+
],
|
550 |
+
"source": [
|
551 |
+
"# Random Integer values\n",
|
552 |
+
"np.random.randint(-4,8, size=(3,3))"
|
553 |
+
]
|
554 |
+
},
|
555 |
+
{
|
556 |
+
"cell_type": "code",
|
557 |
+
"execution_count": 27,
|
558 |
+
"metadata": {},
|
559 |
+
"outputs": [
|
560 |
+
{
|
561 |
+
"data": {
|
562 |
+
"text/plain": [
|
563 |
+
"array([[1., 0., 0., 0., 0.],\n",
|
564 |
+
" [0., 1., 0., 0., 0.],\n",
|
565 |
+
" [0., 0., 1., 0., 0.],\n",
|
566 |
+
" [0., 0., 0., 1., 0.],\n",
|
567 |
+
" [0., 0., 0., 0., 1.]])"
|
568 |
+
]
|
569 |
+
},
|
570 |
+
"execution_count": 27,
|
571 |
+
"metadata": {},
|
572 |
+
"output_type": "execute_result"
|
573 |
+
}
|
574 |
+
],
|
575 |
+
"source": [
|
576 |
+
"# The identity matrix\n",
|
577 |
+
"np.identity(5)"
|
578 |
+
]
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"cell_type": "code",
|
582 |
+
"execution_count": 28,
|
583 |
+
"metadata": {},
|
584 |
+
"outputs": [
|
585 |
+
{
|
586 |
+
"name": "stdout",
|
587 |
+
"output_type": "stream",
|
588 |
+
"text": [
|
589 |
+
"[[1 2 3]\n",
|
590 |
+
" [1 2 3]\n",
|
591 |
+
" [1 2 3]]\n"
|
592 |
+
]
|
593 |
+
}
|
594 |
+
],
|
595 |
+
"source": [
|
596 |
+
"# Repeat an array\n",
|
597 |
+
"arr = np.array([[1,2,3]])\n",
|
598 |
+
"r1 = np.repeat(arr,3, axis=0)\n",
|
599 |
+
"print(r1)"
|
600 |
+
]
|
601 |
+
},
|
602 |
+
{
|
603 |
+
"cell_type": "code",
|
604 |
+
"execution_count": 29,
|
605 |
+
"metadata": {},
|
606 |
+
"outputs": [
|
607 |
+
{
|
608 |
+
"name": "stdout",
|
609 |
+
"output_type": "stream",
|
610 |
+
"text": [
|
611 |
+
"[[1. 1. 1. 1. 1.]\n",
|
612 |
+
" [1. 1. 1. 1. 1.]\n",
|
613 |
+
" [1. 1. 1. 1. 1.]\n",
|
614 |
+
" [1. 1. 1. 1. 1.]\n",
|
615 |
+
" [1. 1. 1. 1. 1.]]\n",
|
616 |
+
"[[0. 0. 0.]\n",
|
617 |
+
" [0. 9. 0.]\n",
|
618 |
+
" [0. 0. 0.]]\n",
|
619 |
+
"[[1. 1. 1. 1. 1.]\n",
|
620 |
+
" [1. 0. 0. 0. 1.]\n",
|
621 |
+
" [1. 0. 9. 0. 1.]\n",
|
622 |
+
" [1. 0. 0. 0. 1.]\n",
|
623 |
+
" [1. 1. 1. 1. 1.]]\n"
|
624 |
+
]
|
625 |
+
}
|
626 |
+
],
|
627 |
+
"source": [
|
628 |
+
"output = np.ones((5,5))\n",
|
629 |
+
"print(output)\n",
|
630 |
+
"\n",
|
631 |
+
"z = np.zeros((3,3))\n",
|
632 |
+
"z[1,1] = 9\n",
|
633 |
+
"print(z)\n",
|
634 |
+
"\n",
|
635 |
+
"output[1:-1,1:-1] = z\n",
|
636 |
+
"print(output)"
|
637 |
+
]
|
638 |
+
},
|
639 |
+
{
|
640 |
+
"cell_type": "markdown",
|
641 |
+
"metadata": {},
|
642 |
+
"source": [
|
643 |
+
"##### Be careful when copying arrays!!!"
|
644 |
+
]
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"cell_type": "code",
|
648 |
+
"execution_count": 30,
|
649 |
+
"metadata": {},
|
650 |
+
"outputs": [
|
651 |
+
{
|
652 |
+
"name": "stdout",
|
653 |
+
"output_type": "stream",
|
654 |
+
"text": [
|
655 |
+
"[1 2 3]\n"
|
656 |
+
]
|
657 |
+
}
|
658 |
+
],
|
659 |
+
"source": [
|
660 |
+
"a = np.array([1,2,3])\n",
|
661 |
+
"b = a.copy()\n",
|
662 |
+
"b[0] = 100\n",
|
663 |
+
"\n",
|
664 |
+
"print(a)"
|
665 |
+
]
|
666 |
+
},
|
667 |
+
{
|
668 |
+
"cell_type": "markdown",
|
669 |
+
"metadata": {},
|
670 |
+
"source": [
|
671 |
+
"### Mathematics"
|
672 |
+
]
|
673 |
+
},
|
674 |
+
{
|
675 |
+
"cell_type": "code",
|
676 |
+
"execution_count": 31,
|
677 |
+
"metadata": {},
|
678 |
+
"outputs": [
|
679 |
+
{
|
680 |
+
"name": "stdout",
|
681 |
+
"output_type": "stream",
|
682 |
+
"text": [
|
683 |
+
"[1 2 3 4]\n"
|
684 |
+
]
|
685 |
+
}
|
686 |
+
],
|
687 |
+
"source": [
|
688 |
+
"a = np.array([1,2,3,4])\n",
|
689 |
+
"print(a)"
|
690 |
+
]
|
691 |
+
},
|
692 |
+
{
|
693 |
+
"cell_type": "code",
|
694 |
+
"execution_count": 32,
|
695 |
+
"metadata": {},
|
696 |
+
"outputs": [
|
697 |
+
{
|
698 |
+
"data": {
|
699 |
+
"text/plain": [
|
700 |
+
"array([3, 4, 5, 6])"
|
701 |
+
]
|
702 |
+
},
|
703 |
+
"execution_count": 32,
|
704 |
+
"metadata": {},
|
705 |
+
"output_type": "execute_result"
|
706 |
+
}
|
707 |
+
],
|
708 |
+
"source": [
|
709 |
+
"a + 2"
|
710 |
+
]
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"cell_type": "code",
|
714 |
+
"execution_count": 33,
|
715 |
+
"metadata": {},
|
716 |
+
"outputs": [
|
717 |
+
{
|
718 |
+
"data": {
|
719 |
+
"text/plain": [
|
720 |
+
"array([-1, 0, 1, 2])"
|
721 |
+
]
|
722 |
+
},
|
723 |
+
"execution_count": 33,
|
724 |
+
"metadata": {},
|
725 |
+
"output_type": "execute_result"
|
726 |
+
}
|
727 |
+
],
|
728 |
+
"source": [
|
729 |
+
"a - 2"
|
730 |
+
]
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"cell_type": "code",
|
734 |
+
"execution_count": 34,
|
735 |
+
"metadata": {},
|
736 |
+
"outputs": [
|
737 |
+
{
|
738 |
+
"data": {
|
739 |
+
"text/plain": [
|
740 |
+
"array([2, 4, 6, 8])"
|
741 |
+
]
|
742 |
+
},
|
743 |
+
"execution_count": 34,
|
744 |
+
"metadata": {},
|
745 |
+
"output_type": "execute_result"
|
746 |
+
}
|
747 |
+
],
|
748 |
+
"source": [
|
749 |
+
"a * 2"
|
750 |
+
]
|
751 |
+
},
|
752 |
+
{
|
753 |
+
"cell_type": "code",
|
754 |
+
"execution_count": 35,
|
755 |
+
"metadata": {},
|
756 |
+
"outputs": [
|
757 |
+
{
|
758 |
+
"data": {
|
759 |
+
"text/plain": [
|
760 |
+
"array([0.5, 1. , 1.5, 2. ])"
|
761 |
+
]
|
762 |
+
},
|
763 |
+
"execution_count": 35,
|
764 |
+
"metadata": {},
|
765 |
+
"output_type": "execute_result"
|
766 |
+
}
|
767 |
+
],
|
768 |
+
"source": [
|
769 |
+
"a / 2"
|
770 |
+
]
|
771 |
+
},
|
772 |
+
{
|
773 |
+
"cell_type": "code",
|
774 |
+
"execution_count": 36,
|
775 |
+
"metadata": {},
|
776 |
+
"outputs": [
|
777 |
+
{
|
778 |
+
"data": {
|
779 |
+
"text/plain": [
|
780 |
+
"array([2, 2, 4, 4])"
|
781 |
+
]
|
782 |
+
},
|
783 |
+
"execution_count": 36,
|
784 |
+
"metadata": {},
|
785 |
+
"output_type": "execute_result"
|
786 |
+
}
|
787 |
+
],
|
788 |
+
"source": [
|
789 |
+
"b = np.array([1,0,1,0])\n",
|
790 |
+
"a + b"
|
791 |
+
]
|
792 |
+
},
|
793 |
+
{
|
794 |
+
"cell_type": "code",
|
795 |
+
"execution_count": 37,
|
796 |
+
"metadata": {},
|
797 |
+
"outputs": [
|
798 |
+
{
|
799 |
+
"data": {
|
800 |
+
"text/plain": [
|
801 |
+
"array([ 1, 4, 9, 16])"
|
802 |
+
]
|
803 |
+
},
|
804 |
+
"execution_count": 37,
|
805 |
+
"metadata": {},
|
806 |
+
"output_type": "execute_result"
|
807 |
+
}
|
808 |
+
],
|
809 |
+
"source": [
|
810 |
+
"a ** 2"
|
811 |
+
]
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"cell_type": "code",
|
815 |
+
"execution_count": 38,
|
816 |
+
"metadata": {},
|
817 |
+
"outputs": [
|
818 |
+
{
|
819 |
+
"data": {
|
820 |
+
"text/plain": [
|
821 |
+
"array([ 0.54030231, -0.41614684, -0.9899925 , -0.65364362])"
|
822 |
+
]
|
823 |
+
},
|
824 |
+
"execution_count": 38,
|
825 |
+
"metadata": {},
|
826 |
+
"output_type": "execute_result"
|
827 |
+
}
|
828 |
+
],
|
829 |
+
"source": [
|
830 |
+
"# Take the sin\n",
|
831 |
+
"np.cos(a)\n",
|
832 |
+
"\n"
|
833 |
+
]
|
834 |
+
},
|
835 |
+
{
|
836 |
+
"cell_type": "markdown",
|
837 |
+
"metadata": {},
|
838 |
+
"source": [
|
839 |
+
"##### Linear Algebra"
|
840 |
+
]
|
841 |
+
},
|
842 |
+
{
|
843 |
+
"cell_type": "code",
|
844 |
+
"execution_count": 40,
|
845 |
+
"metadata": {},
|
846 |
+
"outputs": [
|
847 |
+
{
|
848 |
+
"name": "stdout",
|
849 |
+
"output_type": "stream",
|
850 |
+
"text": [
|
851 |
+
"[[1. 1. 1.]\n",
|
852 |
+
" [1. 1. 1.]]\n",
|
853 |
+
"[[2 2]\n",
|
854 |
+
" [2 2]\n",
|
855 |
+
" [2 2]]\n"
|
856 |
+
]
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"data": {
|
860 |
+
"text/plain": [
|
861 |
+
"array([[6., 6.],\n",
|
862 |
+
" [6., 6.]])"
|
863 |
+
]
|
864 |
+
},
|
865 |
+
"execution_count": 40,
|
866 |
+
"metadata": {},
|
867 |
+
"output_type": "execute_result"
|
868 |
+
}
|
869 |
+
],
|
870 |
+
"source": [
|
871 |
+
"a = np.ones((2,3))\n",
|
872 |
+
"print(a)\n",
|
873 |
+
"\n",
|
874 |
+
"b = np.full((3,2), 2)\n",
|
875 |
+
"print(b)\n",
|
876 |
+
"\n",
|
877 |
+
"np.matmul(a,b)"
|
878 |
+
]
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"cell_type": "code",
|
882 |
+
"execution_count": 41,
|
883 |
+
"metadata": {},
|
884 |
+
"outputs": [
|
885 |
+
{
|
886 |
+
"data": {
|
887 |
+
"text/plain": [
|
888 |
+
"1.0"
|
889 |
+
]
|
890 |
+
},
|
891 |
+
"execution_count": 41,
|
892 |
+
"metadata": {},
|
893 |
+
"output_type": "execute_result"
|
894 |
+
}
|
895 |
+
],
|
896 |
+
"source": [
|
897 |
+
"# Find the determinant\n",
|
898 |
+
"c = np.identity(3)\n",
|
899 |
+
"np.linalg.det(c)"
|
900 |
+
]
|
901 |
+
},
|
902 |
+
{
|
903 |
+
"cell_type": "markdown",
|
904 |
+
"metadata": {},
|
905 |
+
"source": [
|
906 |
+
"##### Statistics"
|
907 |
+
]
|
908 |
+
},
|
909 |
+
{
|
910 |
+
"cell_type": "code",
|
911 |
+
"execution_count": 43,
|
912 |
+
"metadata": {},
|
913 |
+
"outputs": [
|
914 |
+
{
|
915 |
+
"data": {
|
916 |
+
"text/plain": [
|
917 |
+
"array([[1, 2, 3],\n",
|
918 |
+
" [4, 5, 6]])"
|
919 |
+
]
|
920 |
+
},
|
921 |
+
"execution_count": 43,
|
922 |
+
"metadata": {},
|
923 |
+
"output_type": "execute_result"
|
924 |
+
}
|
925 |
+
],
|
926 |
+
"source": [
|
927 |
+
"stats = np.array([[1,2,3],[4,5,6]])\n",
|
928 |
+
"stats"
|
929 |
+
]
|
930 |
+
},
|
931 |
+
{
|
932 |
+
"cell_type": "code",
|
933 |
+
"execution_count": 44,
|
934 |
+
"metadata": {},
|
935 |
+
"outputs": [
|
936 |
+
{
|
937 |
+
"data": {
|
938 |
+
"text/plain": [
|
939 |
+
"1"
|
940 |
+
]
|
941 |
+
},
|
942 |
+
"execution_count": 44,
|
943 |
+
"metadata": {},
|
944 |
+
"output_type": "execute_result"
|
945 |
+
}
|
946 |
+
],
|
947 |
+
"source": [
|
948 |
+
"np.min(stats)"
|
949 |
+
]
|
950 |
+
},
|
951 |
+
{
|
952 |
+
"cell_type": "code",
|
953 |
+
"execution_count": 45,
|
954 |
+
"metadata": {},
|
955 |
+
"outputs": [
|
956 |
+
{
|
957 |
+
"data": {
|
958 |
+
"text/plain": [
|
959 |
+
"array([3, 6])"
|
960 |
+
]
|
961 |
+
},
|
962 |
+
"execution_count": 45,
|
963 |
+
"metadata": {},
|
964 |
+
"output_type": "execute_result"
|
965 |
+
}
|
966 |
+
],
|
967 |
+
"source": [
|
968 |
+
"np.max(stats, axis=1)"
|
969 |
+
]
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"cell_type": "code",
|
973 |
+
"execution_count": 46,
|
974 |
+
"metadata": {},
|
975 |
+
"outputs": [
|
976 |
+
{
|
977 |
+
"data": {
|
978 |
+
"text/plain": [
|
979 |
+
"array([5, 7, 9])"
|
980 |
+
]
|
981 |
+
},
|
982 |
+
"execution_count": 46,
|
983 |
+
"metadata": {},
|
984 |
+
"output_type": "execute_result"
|
985 |
+
}
|
986 |
+
],
|
987 |
+
"source": [
|
988 |
+
"np.sum(stats, axis=0)"
|
989 |
+
]
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"cell_type": "markdown",
|
993 |
+
"metadata": {},
|
994 |
+
"source": [
|
995 |
+
"### Reorganizing Arrays"
|
996 |
+
]
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"cell_type": "code",
|
1000 |
+
"execution_count": 49,
|
1001 |
+
"metadata": {},
|
1002 |
+
"outputs": [
|
1003 |
+
{
|
1004 |
+
"name": "stdout",
|
1005 |
+
"output_type": "stream",
|
1006 |
+
"text": [
|
1007 |
+
"[[1 2 3 4]\n",
|
1008 |
+
" [5 6 7 8]]\n",
|
1009 |
+
"[[1]\n",
|
1010 |
+
" [2]\n",
|
1011 |
+
" [3]\n",
|
1012 |
+
" [4]\n",
|
1013 |
+
" [5]\n",
|
1014 |
+
" [6]\n",
|
1015 |
+
" [7]\n",
|
1016 |
+
" [8]]\n"
|
1017 |
+
]
|
1018 |
+
}
|
1019 |
+
],
|
1020 |
+
"source": [
|
1021 |
+
"before = np.array([[1,2,3,4],[5,6,7,8]])\n",
|
1022 |
+
"print(before)\n",
|
1023 |
+
"\n",
|
1024 |
+
"after = before.reshape((8,1))\n",
|
1025 |
+
"print(after)"
|
1026 |
+
]
|
1027 |
+
},
|
1028 |
+
{
|
1029 |
+
"cell_type": "code",
|
1030 |
+
"execution_count": 50,
|
1031 |
+
"metadata": {},
|
1032 |
+
"outputs": [
|
1033 |
+
{
|
1034 |
+
"data": {
|
1035 |
+
"text/plain": [
|
1036 |
+
"array([[1, 2, 3, 4],\n",
|
1037 |
+
" [5, 6, 7, 8],\n",
|
1038 |
+
" [1, 2, 3, 4],\n",
|
1039 |
+
" [5, 6, 7, 8]])"
|
1040 |
+
]
|
1041 |
+
},
|
1042 |
+
"execution_count": 50,
|
1043 |
+
"metadata": {},
|
1044 |
+
"output_type": "execute_result"
|
1045 |
+
}
|
1046 |
+
],
|
1047 |
+
"source": [
|
1048 |
+
"# Vertically stacking vectors\n",
|
1049 |
+
"v1 = np.array([1,2,3,4])\n",
|
1050 |
+
"v2 = np.array([5,6,7,8])\n",
|
1051 |
+
"\n",
|
1052 |
+
"np.vstack([v1,v2,v1,v2])"
|
1053 |
+
]
|
1054 |
+
},
|
1055 |
+
{
|
1056 |
+
"cell_type": "code",
|
1057 |
+
"execution_count": 51,
|
1058 |
+
"metadata": {},
|
1059 |
+
"outputs": [
|
1060 |
+
{
|
1061 |
+
"data": {
|
1062 |
+
"text/plain": [
|
1063 |
+
"array([[1., 1., 1., 1., 0., 0.],\n",
|
1064 |
+
" [1., 1., 1., 1., 0., 0.]])"
|
1065 |
+
]
|
1066 |
+
},
|
1067 |
+
"execution_count": 51,
|
1068 |
+
"metadata": {},
|
1069 |
+
"output_type": "execute_result"
|
1070 |
+
}
|
1071 |
+
],
|
1072 |
+
"source": [
|
1073 |
+
"# Horizontal stack\n",
|
1074 |
+
"h1 = np.ones((2,4))\n",
|
1075 |
+
"h2 = np.zeros((2,2))\n",
|
1076 |
+
"\n",
|
1077 |
+
"np.hstack((h1,h2))"
|
1078 |
+
]
|
1079 |
+
},
|
1080 |
+
{
|
1081 |
+
"cell_type": "code",
|
1082 |
+
"execution_count": null,
|
1083 |
+
"metadata": {},
|
1084 |
+
"outputs": [],
|
1085 |
+
"source": []
|
1086 |
+
},
|
1087 |
+
{
|
1088 |
+
"cell_type": "code",
|
1089 |
+
"execution_count": null,
|
1090 |
+
"metadata": {},
|
1091 |
+
"outputs": [],
|
1092 |
+
"source": []
|
1093 |
+
}
|
1094 |
+
],
|
1095 |
+
"metadata": {
|
1096 |
+
"kernelspec": {
|
1097 |
+
"display_name": "Python 3 (ipykernel)",
|
1098 |
+
"language": "python",
|
1099 |
+
"name": "python3"
|
1100 |
+
},
|
1101 |
+
"language_info": {
|
1102 |
+
"codemirror_mode": {
|
1103 |
+
"name": "ipython",
|
1104 |
+
"version": 3
|
1105 |
+
},
|
1106 |
+
"file_extension": ".py",
|
1107 |
+
"mimetype": "text/x-python",
|
1108 |
+
"name": "python",
|
1109 |
+
"nbconvert_exporter": "python",
|
1110 |
+
"pygments_lexer": "ipython3",
|
1111 |
+
"version": "3.10.9"
|
1112 |
+
}
|
1113 |
+
},
|
1114 |
+
"nbformat": 4,
|
1115 |
+
"nbformat_minor": 2
|
1116 |
+
}
|
README.md
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Numpy_Basics
|
2 |
+

|
3 |
+
<h2>What is NumPy?</h2>
|
4 |
+
<p>NumPy is a Python library used for working with arrays.
|
5 |
+
|
6 |
+
It also has functions for working in domain of linear algebra, fourier transform, and matrices.
|
7 |
+
|
8 |
+
NumPy was created in 2005 by Travis Oliphant. It is an open source project and you can use it freely.
|
9 |
+
|
10 |
+
NumPy stands for Numerical Python.</p>
|
11 |
+
--------------------------------------------------------------------------------------------------------------------------------------------------
|
12 |
+
<h2>Why Use NumPy?</h2>
|
13 |
+
<p>In Python we have lists that serve the purpose of arrays, but they are slow to process.
|
14 |
+
|
15 |
+
NumPy aims to provide an array object that is up to 50x faster than traditional Python lists.
|
16 |
+
|
17 |
+
The array object in NumPy is called ndarray, it provides a lot of supporting functions that make working with ndarray very easy.
|
18 |
+
|
19 |
+
Arrays are very frequently used in data science, where speed and resources are very important.</p>
|
20 |
+
--------------------------------------------------------------------------------------------------------------------------------------------------
|
21 |
+
<h2>Why is NumPy Faster Than Lists?</h2>
|
22 |
+
<p>NumPy arrays are stored at one continuous place in memory unlike lists, so processes can access and manipulate them very efficiently.
|
23 |
+
|
24 |
+
This behavior is called locality of reference in computer science.
|
25 |
+
|
26 |
+
This is the main reason why NumPy is faster than lists. Also it is optimized to work with latest CPU architectures.</p>
|
27 |
+
--------------------------------------------------------------------------------------------------------------------------------------------------
|
28 |
+
<h2>Which Language is NumPy written in?</h2>
|
29 |
+
<p>NumPy is a Python library and is written partially in Python, but most of the parts that require fast computation are written in C or C++.</p>
|
numpy.png
ADDED
![]() |