--- license: apache-2.0 base_model: jonatasgrosman/wav2vec2-large-xlsr-53-french tags: - generated_from_trainer datasets: - minds14 metrics: - wer model-index: - name: French_asr_model results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: minds14 type: minds14 config: fr-FR split: None args: fr-FR metrics: - name: Wer type: wer value: 0.3484848484848485 --- # French_asr_model This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-french](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-french) on the minds14 dataset. It achieves the following results on the evaluation set: - Loss: 1.2408 - Wer: 0.3485 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:--------:|:----:|:---------------:|:------:| | 0.0049 | 333.3333 | 500 | 1.1485 | 0.3485 | | 0.0015 | 666.6667 | 1000 | 1.2408 | 0.3485 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1