--- license: other base_model: Undi95/Meta-Llama-3-8B-hf tags: - generated_from_trainer model-index: - name: lora-out results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: Undi95/Meta-Llama-3-8B-hf model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false datasets: - path: Pbug/bftest type: sharegpt dataset_prepared_path: val_set_size: 0.05 output_dir: ./lora-out sequence_len: 8192 sample_packing: true pad_to_sequence_len: true wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 1 num_epochs: 10 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 2e-5 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 100 evals_per_epoch: 2 eval_table_size: eval_sample_packing: False saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|> ```

# lora-out This model is a fine-tuned version of [Undi95/Meta-Llama-3-8B-hf](https://huggingface.co/Undi95/Meta-Llama-3-8B-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5419 | 0.03 | 1 | nan | | 2.5492 | 0.51 | 18 | nan | | 2.434 | 1.01 | 36 | nan | | 2.3504 | 1.5 | 54 | nan | | 2.3643 | 2.0 | 72 | nan | | 2.2834 | 2.48 | 90 | nan | | 2.2383 | 2.98 | 108 | nan | | 1.8786 | 3.47 | 126 | nan | | 1.7963 | 3.98 | 144 | nan | | 2.1853 | 4.47 | 162 | nan | | 1.4333 | 4.98 | 180 | nan | | 1.2058 | 5.46 | 198 | nan | | 1.125 | 5.96 | 216 | nan | | 0.809 | 6.44 | 234 | nan | | 0.7118 | 6.94 | 252 | nan | | 0.7175 | 7.44 | 270 | nan | | 0.7341 | 7.94 | 288 | nan | | 0.774 | 8.44 | 306 | nan | | 0.6379 | 8.94 | 324 | nan | | 0.562 | 9.41 | 342 | nan | ### Framework versions - Transformers 4.40.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0