from sentence_transformers import SentenceTransformer import torch class Model: def __init__(self): # Load the pre-trained model self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2') def __call__(self, payload): # Extract text chunks from the payload chunks = payload.get("inputs", []) # Generate embeddings embeddings = self.embedding_model.encode(chunks, convert_to_tensor=True) # Prepare response response = { "embeddings": embeddings.tolist(), # Convert tensor to list for JSON serialization "shape": list(embeddings.shape) # Return the shape of the embeddings tensor } return response