Update README.md
Browse files
README.md
CHANGED
@@ -34,9 +34,12 @@ The model leverages the BertForSequenceClassification architecture, It has been
|
|
34 |
## Example
|
35 |
|
36 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
|
|
37 |
import numpy as np
|
|
|
38 |
from scipy.special import expit
|
39 |
|
|
|
40 |
MODEL = "PavanDeepak/Topic_Classification"
|
41 |
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
42 |
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
|
@@ -51,7 +54,9 @@ scores = expit(scores)
|
|
51 |
predictions = (scores >= 0.5) * 1
|
52 |
|
53 |
for i in range(len(predictions)):
|
|
|
54 |
if predictions[i]:
|
|
|
55 |
print(class_mapping[i])
|
56 |
|
57 |
|
|
|
34 |
## Example
|
35 |
|
36 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
37 |
+
|
38 |
import numpy as np
|
39 |
+
|
40 |
from scipy.special import expit
|
41 |
|
42 |
+
|
43 |
MODEL = "PavanDeepak/Topic_Classification"
|
44 |
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
45 |
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
|
|
|
54 |
predictions = (scores >= 0.5) * 1
|
55 |
|
56 |
for i in range(len(predictions)):
|
57 |
+
|
58 |
if predictions[i]:
|
59 |
+
|
60 |
print(class_mapping[i])
|
61 |
|
62 |
|