--- base_model: airesearch/wangchanberta-base-att-spm-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: wangchanberta-fine-tune-fin-news-sentiment-th results: [] --- # wangchanberta-fine-tune-fin-news-sentiment-th This model is a fine-tuned version of [airesearch/wangchanberta-base-att-spm-uncased](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6650 - Accuracy: 0.7276 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.9665 | 1.0 | 3054 | 0.9572 | 0.5602 | | 0.8734 | 2.0 | 6108 | 0.8522 | 0.6439 | | 0.7737 | 3.0 | 9162 | 0.7577 | 0.6992 | | 0.6607 | 4.0 | 12216 | 0.6860 | 0.7205 | | 0.6068 | 5.0 | 15270 | 0.6650 | 0.7276 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0