--- license: other base_model: meta-llama/Meta-Llama-3-8B tags: - llama-factory - full - generated_from_trainer model-index: - name: C016_random_sample_llama3-8b-base_pretrain_20240504_181744 results: [] --- # C016_random_sample_llama3-8b-base_pretrain_20240504_181744 This model is a fine-tuned version of [/data/pro-align/progressalign/shared_storage/downloaded_models/llama3-8b-base](https://huggingface.co//data/pro-align/progressalign/shared_storage/downloaded_models/llama3-8b-base) on the C016_random_sample_data dataset. It achieves the following results on the evaluation set: - Loss: 2.4196 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 64 - total_eval_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: polynomial - lr_scheduler_warmup_steps: 20 - num_epochs: 4.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.5472 | 0.1947 | 200 | 2.5262 | | 2.4431 | 0.3895 | 400 | 2.4733 | | 2.4163 | 0.5842 | 600 | 2.4443 | | 2.4462 | 0.7790 | 800 | 2.4281 | | 2.4353 | 0.9737 | 1000 | 2.4196 | | 2.2111 | 1.1685 | 1200 | 2.4290 | | 2.2503 | 1.3632 | 1400 | 2.4281 | | 2.258 | 1.5579 | 1600 | 2.4271 | | 2.254 | 1.7527 | 1800 | 2.4266 | | 2.2508 | 1.9474 | 2000 | 2.4266 | | 2.2112 | 2.1422 | 2200 | 2.4287 | | 2.2063 | 2.3369 | 2400 | 2.4293 | | 2.2544 | 2.5316 | 2600 | 2.4291 | | 2.2024 | 2.7264 | 2800 | 2.4289 | | 2.2074 | 2.9211 | 3000 | 2.4288 | | 2.2268 | 3.1159 | 3200 | 2.4297 | | 2.1556 | 3.3106 | 3400 | 2.4294 | | 2.1953 | 3.5054 | 3600 | 2.4296 | | 2.2002 | 3.7001 | 3800 | 2.4294 | | 2.2437 | 3.8948 | 4000 | 2.4291 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.3.0 - Datasets 2.19.0 - Tokenizers 0.19.1