File size: 23,120 Bytes
d458a68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
#!/usr/bin/env python3
# Portions Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import gzip
import html
import io
import math
from functools import lru_cache
from typing import Callable, List, Optional

import ftfy

import numpy as np
import regex as re
import torch
import torch.nn as nn
from iopath.common.file_io import g_pathmgr
from timm.models.layers import trunc_normal_

from .helpers import cast_if_src_dtype, VerboseNNModule


def get_sinusoid_encoding_table(n_position, d_hid):
    """Sinusoid position encoding table"""

    # TODO: make it with torch instead of numpy
    def get_position_angle_vec(position):
        return [
            position / np.power(10000, 2 * (hid_j // 2) / d_hid)
            for hid_j in range(d_hid)
        ]

    sinusoid_table = np.array(
        [get_position_angle_vec(pos_i) for pos_i in range(n_position)]
    )
    sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2])  # dim 2i
    sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2])  # dim 2i+1

    return torch.FloatTensor(sinusoid_table).unsqueeze(0)


def interpolate_pos_encoding_2d(target_spatial_size, pos_embed):
    N = pos_embed.shape[1]
    if N == target_spatial_size:
        return pos_embed
    dim = pos_embed.shape[-1]
    # nn.functional.interpolate doesn't work with bfloat16 so we cast to float32
    pos_embed, updated = cast_if_src_dtype(pos_embed, torch.bfloat16, torch.float32)
    pos_embed = nn.functional.interpolate(
        pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(
            0, 3, 1, 2
        ),
        scale_factor=math.sqrt(target_spatial_size / N),
        mode="bicubic",
    )
    if updated:
        pos_embed, _ = cast_if_src_dtype(pos_embed, torch.float32, torch.bfloat16)
    pos_embed = pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
    return pos_embed


def interpolate_pos_encoding(
    npatch_per_img,
    pos_embed,
    patches_layout,
    input_shape=None,
    first_patch_idx=1,
):
    assert first_patch_idx == 0 or first_patch_idx == 1, "there is 1 CLS token or none"
    N = pos_embed.shape[1] - first_patch_idx  # since it's 1 if cls_token exists
    if npatch_per_img == N:
        return pos_embed

    assert (
        patches_layout[-1] == patches_layout[-2]
    ), "Interpolation of pos embed not supported for non-square layouts"

    class_emb = pos_embed[:, :first_patch_idx]
    pos_embed = pos_embed[:, first_patch_idx:]

    if input_shape is None or patches_layout[0] == 1:
        # simple 2D pos embedding, no temporal component
        pos_embed = interpolate_pos_encoding_2d(npatch_per_img, pos_embed)
    elif patches_layout[0] > 1:
        # pos embed has a temporal component
        assert len(input_shape) == 4, "temporal interpolation not supported"
        # we only support 2D interpolation in this case
        num_frames = patches_layout[0]
        num_spatial_tokens = patches_layout[1] * patches_layout[2]
        pos_embed = pos_embed.view(1, num_frames, num_spatial_tokens, -1)
        # interpolate embedding for zeroth frame
        pos_embed = interpolate_pos_encoding_2d(
            npatch_per_img, pos_embed[0, 0, ...].unsqueeze(0)
        )
    else:
        raise ValueError("This type of interpolation isn't implemented")

    return torch.cat((class_emb, pos_embed), dim=1)


def _get_pos_embedding(
    npatch_per_img,
    pos_embed,
    patches_layout,
    input_shape,
    first_patch_idx=1,
):
    pos_embed = interpolate_pos_encoding(
        npatch_per_img,
        pos_embed,
        patches_layout,
        input_shape=input_shape,
        first_patch_idx=first_patch_idx,
    )
    return pos_embed


class PatchEmbedGeneric(nn.Module):
    """
    PatchEmbed from Hydra
    """

    def __init__(self, proj_stem, norm_layer: Optional[nn.Module] = None):
        super().__init__()

        if len(proj_stem) > 1:
            self.proj = nn.Sequential(*proj_stem)
        else:
            # Special case to be able to load pre-trained models that were
            # trained with a standard stem
            self.proj = proj_stem[0]
        self.norm_layer = norm_layer

    def get_patch_layout(self, img_size):
        with torch.no_grad():
            dummy_img = torch.zeros(
                [
                    1,
                ]
                + img_size
            )
            dummy_out = self.proj(dummy_img)
        embed_dim = dummy_out.shape[1]
        patches_layout = tuple(dummy_out.shape[2:])
        num_patches = np.prod(patches_layout)
        return patches_layout, num_patches, embed_dim

    def forward(self, x):
        x = self.proj(x)
        # B C (T_I_V_A.txt) H W -> B (T_I_V_A.txt) H W C
        x = x.flatten(2).transpose(1, 2)
        if self.norm_layer is not None:
            x = self.norm_layer(x)
        return x


class SpatioTemporalPosEmbeddingHelper(VerboseNNModule):
    def __init__(
        self,
        patches_layout: List,
        num_patches: int,
        num_cls_tokens: int,
        embed_dim: int,
        learnable: bool,
    ) -> None:
        super().__init__()
        self.num_cls_tokens = num_cls_tokens
        self.patches_layout = patches_layout
        self.num_patches = num_patches
        self.num_tokens = num_cls_tokens + num_patches
        self.learnable = learnable
        if self.learnable:
            self.pos_embed = nn.Parameter(torch.zeros(1, self.num_tokens, embed_dim))
            trunc_normal_(self.pos_embed, std=0.02)
        else:
            self.register_buffer(
                "pos_embed", get_sinusoid_encoding_table(self.num_tokens, embed_dim)
            )

    def get_pos_embedding(self, vision_input, all_vision_tokens):
        input_shape = vision_input.shape
        pos_embed = _get_pos_embedding(
            all_vision_tokens.size(1) - self.num_cls_tokens,
            pos_embed=self.pos_embed,
            patches_layout=self.patches_layout,
            input_shape=input_shape,
            first_patch_idx=self.num_cls_tokens,
        )
        return pos_embed


class RGBDTPreprocessor(VerboseNNModule):
    def __init__(
        self,
        rgbt_stem: PatchEmbedGeneric,
        depth_stem: PatchEmbedGeneric,
        img_size: List = (3, 224, 224),
        num_cls_tokens: int = 1,
        pos_embed_fn: Callable = None,
        use_type_embed: bool = False,
        init_param_style: str = "openclip",
    ) -> None:
        super().__init__()
        stem = rgbt_stem if rgbt_stem is not None else depth_stem
        (
            self.patches_layout,
            self.num_patches,
            self.embed_dim,
        ) = stem.get_patch_layout(img_size)
        self.rgbt_stem = rgbt_stem
        self.depth_stem = depth_stem
        self.use_pos_embed = pos_embed_fn is not None
        self.use_type_embed = use_type_embed
        self.num_cls_tokens = num_cls_tokens

        if self.use_pos_embed:
            self.pos_embedding_helper = pos_embed_fn(
                patches_layout=self.patches_layout,
                num_cls_tokens=num_cls_tokens,
                num_patches=self.num_patches,
                embed_dim=self.embed_dim,
            )
        if self.num_cls_tokens > 0:
            self.cls_token = nn.Parameter(
                torch.zeros(1, self.num_cls_tokens, self.embed_dim)
            )
        if self.use_type_embed:
            self.type_embed = nn.Parameter(torch.zeros(1, 1, self.embed_dim))

        self.init_parameters(init_param_style)

    @torch.no_grad()
    def init_parameters(self, init_param_style):
        if init_param_style == "openclip":
            # OpenCLIP style initialization
            scale = self.embed_dim**-0.5
            if self.use_pos_embed:
                nn.init.normal_(self.pos_embedding_helper.pos_embed)
                self.pos_embedding_helper.pos_embed *= scale

            if self.num_cls_tokens > 0:
                nn.init.normal_(self.cls_token)
                self.cls_token *= scale
        elif init_param_style == "vit":
            self.cls_token.data.fill_(0)
        else:
            raise ValueError(f"Unknown init {init_param_style}")

        if self.use_type_embed:
            nn.init.normal_(self.type_embed)

    def tokenize_input_and_cls_pos(self, input, stem, mask):
        # tokens is of shape B x L x D
        tokens = stem(input)
        assert tokens.ndim == 3
        assert tokens.shape[2] == self.embed_dim
        B = tokens.shape[0]
        if self.num_cls_tokens > 0:
            class_tokens = self.cls_token.expand(
                B, -1, -1
            )  # stole class_tokens impl from Phil Wang, thanks
            tokens = torch.cat((class_tokens, tokens), dim=1)
        if self.use_pos_embed:
            pos_embed = self.pos_embedding_helper.get_pos_embedding(input, tokens)
            tokens = tokens + pos_embed
        if self.use_type_embed:
            tokens = tokens + self.type_embed.expand(B, -1, -1)
        return tokens

    def forward(self, vision=None, depth=None, patch_mask=None):
        if patch_mask is not None:
            raise NotImplementedError()

        if vision is not None:
            vision_tokens = self.tokenize_input_and_cls_pos(
                vision, self.rgbt_stem, patch_mask
            )

        if depth is not None:
            depth_tokens = self.tokenize_input_and_cls_pos(
                depth, self.depth_stem, patch_mask
            )

        # aggregate tokens
        if vision is not None and depth is not None:
            final_tokens = vision_tokens + depth_tokens
        else:
            final_tokens = vision_tokens if vision is not None else depth_tokens
        return_dict = {
            "trunk": {
                "tokens": final_tokens,
            },
            "head": {},
        }
        return return_dict


class AudioPreprocessor(RGBDTPreprocessor):
    def __init__(self, audio_stem: PatchEmbedGeneric, **kwargs) -> None:
        super().__init__(rgbt_stem=audio_stem, depth_stem=None, **kwargs)

    def forward(self, audio=None):
        return super().forward(vision=audio)


class ThermalPreprocessor(RGBDTPreprocessor):
    def __init__(self, thermal_stem: PatchEmbedGeneric, **kwargs) -> None:
        super().__init__(rgbt_stem=thermal_stem, depth_stem=None, **kwargs)

    def forward(self, thermal=None):
        return super().forward(vision=thermal)


def build_causal_attention_mask(context_length):
    # lazily create causal attention mask, with full attention between the vision tokens
    # pytorch uses additive attention mask; fill with -inf
    mask = torch.empty(context_length, context_length, requires_grad=False)
    mask.fill_(float("-inf"))
    mask.triu_(1)  # zero out the lower diagonal
    return mask


class TextPreprocessor(VerboseNNModule):
    def __init__(
        self,
        vocab_size: int,
        context_length: int,
        embed_dim: int,
        causal_masking: bool,
        supply_seq_len_to_head: bool = True,
        num_cls_tokens: int = 0,
        init_param_style: str = "openclip",
    ) -> None:
        super().__init__()
        self.vocab_size = vocab_size
        self.context_length = context_length
        self.token_embedding = nn.Embedding(vocab_size, embed_dim)
        self.pos_embed = nn.Parameter(
            torch.empty(1, self.context_length + num_cls_tokens, embed_dim)
        )
        self.causal_masking = causal_masking
        if self.causal_masking:
            mask = build_causal_attention_mask(self.context_length)
            # register the mask as a buffer so it can be moved to the right device
            self.register_buffer("mask", mask)

        self.supply_seq_len_to_head = supply_seq_len_to_head
        self.num_cls_tokens = num_cls_tokens
        self.embed_dim = embed_dim
        if num_cls_tokens > 0:
            assert self.causal_masking is False, "Masking + CLS token isn't implemented"
            self.cls_token = nn.Parameter(
                torch.zeros(1, self.num_cls_tokens, embed_dim)
            )

        self.init_parameters(init_param_style)

    @torch.no_grad()
    def init_parameters(self, init_param_style="openclip"):
        # OpenCLIP style initialization
        nn.init.normal_(self.token_embedding.weight, std=0.02)
        nn.init.normal_(self.pos_embed, std=0.01)

        if init_param_style == "openclip":
            # OpenCLIP style initialization
            scale = self.embed_dim**-0.5
            if self.num_cls_tokens > 0:
                nn.init.normal_(self.cls_token)
                self.cls_token *= scale
        elif init_param_style == "vit":
            self.cls_token.data.fill_(0)
        else:
            raise ValueError(f"Unknown init {init_param_style}")

    def forward(self, text):
        # text tokens are of shape B x L x D
        text_tokens = self.token_embedding(text)
        # concat CLS tokens if any
        if self.num_cls_tokens > 0:
            B = text_tokens.shape[0]
            class_tokens = self.cls_token.expand(
                B, -1, -1
            )  # stole class_tokens impl from Phil Wang, thanks
            text_tokens = torch.cat((class_tokens, text_tokens), dim=1)
        text_tokens = text_tokens + self.pos_embed
        return_dict = {
            "trunk": {
                "tokens": text_tokens,
            },
            "head": {},
        }
        # Compute sequence length after adding CLS tokens
        if self.supply_seq_len_to_head:
            text_lengths = text.argmax(dim=-1)
            return_dict["head"] = {
                "seq_len": text_lengths,
            }
        if self.causal_masking:
            return_dict["trunk"].update({"attn_mask": self.mask})
        return return_dict


class Im2Video(nn.Module):
    """Convert an image into a trivial video."""

    def __init__(self, time_dim=2):
        super().__init__()
        self.time_dim = time_dim

    def forward(self, x):
        if x.ndim == 4:
            # B, C, H, W -> B, C, T_I_V_A.txt, H, W
            return x.unsqueeze(self.time_dim)
        elif x.ndim == 5:
            return x
        else:
            raise ValueError(f"Dimension incorrect {x.shape}")


class PadIm2Video(Im2Video):
    def __init__(self, ntimes, pad_type, time_dim=2):
        super().__init__(time_dim=time_dim)
        assert ntimes > 0
        assert pad_type in ["zero", "repeat"]
        self.ntimes = ntimes
        self.pad_type = pad_type

    def forward(self, x):
        x = super().forward(x)
        if x.shape[self.time_dim] == 1:
            if self.pad_type == "repeat":
                new_shape = [1] * len(x.shape)
                new_shape[self.time_dim] = self.ntimes
                x = x.repeat(new_shape)
            elif self.pad_type == "zero":
                padarg = [0, 0] * len(x.shape)
                padarg[2 * self.time_dim + 1] = self.ntimes - x.shape[self.time_dim]
                x = nn.functional.pad(x, padarg)
        return x


# Modified from github.com/openai/CLIP
@lru_cache()
def bytes_to_unicode():
    """
    Returns list of utf-8 byte and a corresponding list of unicode strings.
    The reversible bpe codes work on unicode strings.
    This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
    When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
    This is a signficant percentage of your normal, say, 32K bpe vocab.
    To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
    And avoids mapping to whitespace/control characters the bpe code barfs on.
    """
    bs = (
        list(range(ord("!"), ord("~") + 1))
        + list(range(ord("¡"), ord("¬") + 1))
        + list(range(ord("®"), ord("ÿ") + 1))
    )
    cs = bs[:]
    n = 0
    for b in range(2**8):
        if b not in bs:
            bs.append(b)
            cs.append(2**8 + n)
            n += 1
    cs = [chr(n) for n in cs]
    return dict(zip(bs, cs))


def get_pairs(word):
    """Return set of symbol pairs in a word.
    Word is represented as tuple of symbols (symbols being variable-length strings).
    """
    pairs = set()
    prev_char = word[0]
    for char in word[1:]:
        pairs.add((prev_char, char))
        prev_char = char
    return pairs


def basic_clean(text):
    text = ftfy.fix_text(text)
    text = html.unescape(html.unescape(text))
    return text.strip()


def whitespace_clean(text):
    text = re.sub(r"\s+", " ", text)
    text = text.strip()
    return text


class SimpleTokenizer(object):
    def __init__(self, bpe_path: str, context_length=77):
        self.byte_encoder = bytes_to_unicode()
        self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}

        with g_pathmgr.open(bpe_path, "rb") as fh:
            bpe_bytes = io.BytesIO(fh.read())
            merges = gzip.open(bpe_bytes).read().decode("utf-8").split("\n")
        merges = merges[1 : 49152 - 256 - 2 + 1]
        merges = [tuple(merge.split()) for merge in merges]
        vocab = list(bytes_to_unicode().values())
        vocab = vocab + [v + "</w>" for v in vocab]
        for merge in merges:
            vocab.append("".join(merge))
        vocab.extend(["<|startoftext|>", "<|endoftext|>"])
        self.encoder = dict(zip(vocab, range(len(vocab))))
        self.decoder = {v: k for k, v in self.encoder.items()}
        self.bpe_ranks = dict(zip(merges, range(len(merges))))
        self.cache = {
            "<|startoftext|>": "<|startoftext|>",
            "<|endoftext|>": "<|endoftext|>",
        }
        self.pat = re.compile(
            r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""",
            re.IGNORECASE,
        )
        self.context_length = context_length

    def bpe(self, token):
        if token in self.cache:
            return self.cache[token]
        word = tuple(token[:-1]) + (token[-1] + "</w>",)
        pairs = get_pairs(word)

        if not pairs:
            return token + "</w>"

        while True:
            bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
            if bigram not in self.bpe_ranks:
                break
            first, second = bigram
            new_word = []
            i = 0
            while i < len(word):
                try:
                    j = word.index(first, i)
                    new_word.extend(word[i:j])
                    i = j
                except:
                    new_word.extend(word[i:])
                    break

                if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
                    new_word.append(first + second)
                    i += 2
                else:
                    new_word.append(word[i])
                    i += 1
            new_word = tuple(new_word)
            word = new_word
            if len(word) == 1:
                break
            else:
                pairs = get_pairs(word)
        word = " ".join(word)
        self.cache[token] = word
        return word

    def encode(self, text):
        bpe_tokens = []
        text = whitespace_clean(basic_clean(text)).lower()
        for token in re.findall(self.pat, text):
            token = "".join(self.byte_encoder[b] for b in token.encode("utf-8"))
            bpe_tokens.extend(
                self.encoder[bpe_token] for bpe_token in self.bpe(token).split(" ")
            )
        return bpe_tokens

    def decode(self, tokens):
        text = "".join([self.decoder[token] for token in tokens])
        text = (
            bytearray([self.byte_decoder[c] for c in text])
            .decode("utf-8", errors="replace")
            .replace("</w>", " ")
        )
        return text

    def __call__(self, texts, context_length=None):
        if not context_length:
            context_length = self.context_length

        if isinstance(texts, str):
            texts = [texts]

        sot_token = self.encoder["<|startoftext|>"]
        eot_token = self.encoder["<|endoftext|>"]
        all_tokens = [[sot_token] + self.encode(text) + [eot_token] for text in texts]
        result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)

        for i, tokens in enumerate(all_tokens):
            tokens = tokens[:context_length]
            result[i, : len(tokens)] = torch.tensor(tokens)

        if len(result) == 1:
            return result[0]
        return result


class IMUPreprocessor(VerboseNNModule):
    def __init__(
        self,
        kernel_size: int,
        imu_stem: PatchEmbedGeneric,
        embed_dim: int,
        img_size: List = (6, 2000),
        num_cls_tokens: int = 1,
        pos_embed_fn: Callable = None,
        init_param_style: str = "openclip",
    ) -> None:
        super().__init__()
        stem = imu_stem
        self.imu_stem = imu_stem
        self.embed_dim = embed_dim
        self.use_pos_embed = pos_embed_fn is not None
        self.num_cls_tokens = num_cls_tokens
        self.kernel_size = kernel_size
        self.pos_embed = nn.Parameter(
            torch.empty(1, (img_size[1] // kernel_size) + num_cls_tokens, embed_dim)
        )

        if self.num_cls_tokens > 0:
            self.cls_token = nn.Parameter(
                torch.zeros(1, self.num_cls_tokens, self.embed_dim)
            )

        self.init_parameters(init_param_style)

    @torch.no_grad()
    def init_parameters(self, init_param_style):
        nn.init.normal_(self.pos_embed, std=0.01)

        if init_param_style == "openclip":
            # OpenCLIP style initialization
            scale = self.embed_dim**-0.5

            if self.num_cls_tokens > 0:
                nn.init.normal_(self.cls_token)
                self.cls_token *= scale
        elif init_param_style == "vit":
            self.cls_token.data.fill_(0)
        else:
            raise ValueError(f"Unknown init {init_param_style}")

    def tokenize_input_and_cls_pos(self, input, stem):
        # tokens is of shape B x L x D
        tokens = stem.norm_layer(stem.proj(input))
        assert tokens.ndim == 3
        assert tokens.shape[2] == self.embed_dim
        B = tokens.shape[0]
        if self.num_cls_tokens > 0:
            class_tokens = self.cls_token.expand(
                B, -1, -1
            )  # stole class_tokens impl from Phil Wang, thanks
            tokens = torch.cat((class_tokens, tokens), dim=1)
        if self.use_pos_embed:
            tokens = tokens + self.pos_embed
        return tokens

    def forward(self, imu):
        # Patchify
        imu = imu.unfold(
            -1,
            self.kernel_size,
            self.kernel_size,
        ).permute(0, 2, 1, 3)
        imu = imu.reshape(imu.size(0), imu.size(1), -1)

        imu_tokens = self.tokenize_input_and_cls_pos(
            imu,
            self.imu_stem,
        )

        return_dict = {
            "trunk": {
                "tokens": imu_tokens,
            },
            "head": {},
        }
        return return_dict