import gradio as gr import torch from torchvision import models, transforms # -- get torch and cuda version TORCH_VERSION = ".".join(torch.__version__.split(".")[:2]) CUDA_VERSION = torch.__version__.split("+")[-1] ''' # -- install pre-build detectron2 !pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/{CUDA_VERSION}/{TORCH_VERSION}/index.html import detectron2 from detectron2.utils.logger import setup_logger # ???? from detectron2 import model_zoo from detectron2.engine import DefaultPredictor from detectron2.config import get_cfg # ???? setup_logger() # -- load rcnn model cfg = get_cfg() # add project-specific config (e.g., TensorMask) here if you're not running a model in detectron2's core library cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")) cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 # set threshold for this model # Find a model from detectron2's model zoo. You can use the https://dl.fbaipublicfiles... url as well cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml") predictor = DefaultPredictor(cfg) !wget http://images.cocodataset.org/val2017/000000439715.jpg -q -O input.jpg im = cv2.imread("./input.jpg") cv2_imshow(im) outputs = predictor(im) print(outputs["instances"].pred_classes) print(outputs["instances"].pred_boxes) ''' # -- load Mask R-CNN model for segmentation DesignModernityModel = torch.load("DesignModernityModel.pt") #INPUT_FEATURES = DesignModernityModel.fc.in_features #linear = nn.linear(INPUT_FEATURES, 5) DesignModernityModel.eval() # set state of the model to inference LABELS = ['2000-2004', '2006-2008', '2009-2011', '2012-2015', '2016-2018'] carTransforms = transforms.Compose([transforms.Resize(224)]) def classifyCar(im): im = Image.fromarray(im.astype('uint8'), 'RGB') im = carTransforms(im).unsqueeze(0) # transform and add batch dimension with torch.no_grad(): scores = torch.nn.functional.softmax(model(im)[0]) return {LABELS[i]: float(scores[i]) for i in range(2)} examples = [[example_img.jpg], [example_img2.jpg]] # must be uploaded in repo # create interface for model interface = gr.Interface(classifyCar, inputs='Image', outputs='label', cache_examples=False, title='VW Up or Fiat 500', example=examples) interface.launch()