{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c7335a78f80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1734603254644159111, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMiWT60Wt09uldWvsc/R77eZg09Ti9HPQAAAAAAAAAA5h6Zvfa8Yboeeps792vbNez9aLpcjba6AACAPwAAgD8tgxa+pNYcu3TJkDud7sM4YoxYPMUJpLkAAIA/AACAP4AtqT1x3XG5V/2cueuSFDa6dh+7pty6OAAAgD8AAIA/zU+9vPbkMLrelCy5jZHWs6rh1rpT5UU4AACAPwAAgD8zBcq8KdBDus7NmDt/OFK2hdXZukr7WbUAAIA/AACAP5oX5zxc8zy6Lv14u8lhHDjY6mm6JtMYOgAAgD8AAIA/M/kFPtmjvD9dPhQ/jpkHvr1K7Tsz4zk+AAAAAAAAAACzlj89qfomvLRpxbw5Fro8Yh2GvWoZmD0AAIA/AACAPzNlFTwftZy5Y/NhO452QjjADii78QAPugAAgD8AAIA/M/MpPPaYSbqAtIq6RC5jNBjffbv26KA5AACAPwAAgD+AvV299uxbuvxrR7u85Uk19jXLuiCiajoAAIA/AACAP4CKsL0pQBC6zj5/O6qbKTgM1jC66wFtuQAAgD8AAIA/M1RrvezZ/bmaWg45JyY+NCmnJboVVyS4AACAPwAAgD92chS/KhkHP9B9UT4lrIy+GGkevmrTvjwAAAAAAAAAAACC7LwaxyA+o0ztPAfRKL7KRn484g3yPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGTs52Qnx8WMAWyUTegDjAF0lEdAkeW24d6syXV9lChoBkdAYHLwAEMb32gHTegDaAhHQJHnEBU70Wd1fZQoaAZHQFzHl2vB7/poB03oA2gIR0CR6ecEeQuFdX2UKGgGR0Bh4NsYVIqcaAdN6ANoCEdAkerIqPOpsHV9lChoBkdAY0DiTdLxqmgHTegDaAhHQJHrtjy4FzN1fZQoaAZHQGM8EgfU4JhoB03oA2gIR0CR7BIZqEeydX2UKGgGR0Bt1C4Wk8A8aAdNLAFoCEdAkfJk4BFNL3V9lChoBkfAPTX6qKgqVmgHS+ZoCEdAkfU6S1Vo6HV9lChoBkdAZKFzvqkdm2gHTegDaAhHQJH4vq1PWQR1fZQoaAZHQGDl+BYmsvJoB03oA2gIR0CR/ZeLvTgEdX2UKGgGR0BcOBJ/XoTxaAdN6ANoCEdAkgBONgjQiXV9lChoBkdAPl08ifQKKGgHS9hoCEdAkgCeCK77K3V9lChoBkdAYsILQ5WBBmgHTegDaAhHQJIDMvIwM6R1fZQoaAZHQGPUSrgflp5oB03oA2gIR0CSG0YOUdJbdX2UKGgGR0BhhjNfPX05aAdN6ANoCEdAkhuejh1klXV9lChoBkdAZcrePaL4vmgHTegDaAhHQJIcHoFFDv51fZQoaAZHQGMqpiI+GGpoB03oA2gIR0CSIbuyu6mPdX2UKGgGR0BjM+S8rZrYaAdN6ANoCEdAki0f5+H8CXV9lChoBkdAZw/1HOKO1mgHTegDaAhHQJI4RLYf4h51fZQoaAZHQGIM6a9bor5oB03oA2gIR0CSOtOJcgQpdX2UKGgGR0Bidyvkili0aAdN6ANoCEdAkjueby6MBXV9lChoBkfAK5889wFTvWgHS+NoCEdAkjwL83uNP3V9lChoBkdAY6cTpxFRYWgHTegDaAhHQJI8ZX+2mYV1fZQoaAZHQGVpbMotthxoB03oA2gIR0CSPLMVUModdX2UKGgGR0BhKq5oXbdraAdN6ANoCEdAkkH02DQJHHV9lChoBkdAX9ScWj4592gHTegDaAhHQJJH4TEit7t1fZQoaAZHQGHsKyWzF/BoB03oA2gIR0CSTR/3WWhRdX2UKGgGR0Bl1eoFV1fWaAdN6ANoCEdAklALHIZIhHV9lChoBkdAaB2c1fmcOWgHTegDaAhHQJJQVENOM2p1fZQoaAZHQGVfDriVB2RoB03oA2gIR0CSU2zfJmuldX2UKGgGR0BeJX4CZF5OaAdN6ANoCEdAkm3U9hZyMnV9lChoBkdAYVqbDMvAXWgHTegDaAhHQJJuLAmAskJ1fZQoaAZHQGSUhCMPz4FoB03oA2gIR0CSbqHcUM5PdX2UKGgGR0AyAug6EJ0GaAdL6mgIR0CScU3nIQvpdX2UKGgGR0Bh0jILgGbDaAdN6ANoCEdAknJ6oESuhnV9lChoBkdAYigxzq8lHGgHTegDaAhHQJKFGrFOwgV1fZQoaAZHQGNOUypJf6ZoB03oA2gIR0CSiEQPI4lydX2UKGgGR0BgWGbCrLhaaAdN6ANoCEdAkolILw4KhXV9lChoBkdAYuhihFmWdGgHTegDaAhHQJKJ1mDlHSZ1fZQoaAZHQF0y33YcvM9oB03oA2gIR0CSikl1KXfJdX2UKGgGR0Bh5DmfXf65aAdN6ANoCEdAkoqsEmplz3V9lChoBkdAYdb6By0a62gHTegDaAhHQJKR4YXO4Xp1fZQoaAZHQGMwk6DGtIVoB03oA2gIR0CSmCqqOtGNdX2UKGgGR0BdiH6Eal1saAdN6ANoCEdAkp2RVlwtKHV9lChoBkdAZRy9qUNayWgHTegDaAhHQJKgtBqsU7F1fZQoaAZHQGPxkPlMh5hoB03oA2gIR0CSpAOktVaPdX2UKGgGR0BmB/lXA/LUaAdN6ANoCEdAkr5OEZiuuHV9lChoBkdAYLzlqagElmgHTegDaAhHQJK+0px3mmt1fZQoaAZHQGApjXWe6I5oB03oA2gIR0CSv5Ifr8iwdX2UKGgGR0BjnyfjCHh1aAdN6ANoCEdAksQ1RgqmTHV9lChoBkdAZFZBzFMqSWgHTegDaAhHQJLGIrZrYXh1fZQoaAZHQC08W/JvHcVoB00mAWgIR0CS2P4EwFkhdX2UKGgGR0BkqQClrM1TaAdN6ANoCEdAktqlnRLK3nV9lChoBkdAZMUieumrKmgHTegDaAhHQJLdLVCojwB1fZQoaAZHQGBJZRKpT/BoB03oA2gIR0CS3ejXnQpndX2UKGgGR0Bg2JrgwXZXaAdN6ANoCEdAkt5OSbH6uXV9lChoBkdAZsZ+o99tuWgHTegDaAhHQJLen/p+tr91fZQoaAZHQGSmXt0FKTVoB03oA2gIR0CS3uyTINmUdX2UKGgGR0BieyN+9allaAdN6ANoCEdAkuOtdmg8KXV9lChoBkdAXQ47eVLSNWgHTegDaAhHQJLpMphF3IN1fZQoaAZHQESSTBZZB9loB008AWgIR0CS7S889wFUdX2UKGgGR0BjcL3K0UoKaAdN6ANoCEdAku3smBvrGHV9lChoBkdAYKR5cC5mRWgHTegDaAhHQJLxaCWeHzp1fZQoaAZHQGD1dZaFEiNoB03oA2gIR0CS9QAymALBdX2UKGgGR0Bd9Hu7YkE+aAdN6ANoCEdAkw42LYPGyXV9lChoBkdAZby5hjOLSGgHTegDaAhHQJMOjsolUqB1fZQoaAZHQGMuSjQAuI1oB03oA2gIR0CTDwpRoAXEdX2UKGgGR0Bmz6/sVtXQaAdN6ANoCEdAkxHU6xPfsXV9lChoBkdARxbN+so2GmgHTRsBaAhHQJMfIGKQ7tB1fZQoaAZHQGJwPRZ2ZApoB03oA2gIR0CTJe06YE4edX2UKGgGR0Bk5aXIEKVqaAdN6ANoCEdAkyfsIJJGv3V9lChoBkdAYbx8OTaCc2gHTegDaAhHQJMsL1Gsmv51fZQoaAZHQGKp1l5GBnVoB03oA2gIR0CTLL4GD+R6dX2UKGgGR0Bh0KaqjrRjaAdN6ANoCEdAky0yaAnUlXV9lChoBkdAYQMXQdCE6GgHTegDaAhHQJMtmiwjdHl1fZQoaAZHQGZjeee4Cp5oB03oA2gIR0CTMvzmfXf7dX2UKGgGR0BCJn3+MqBmaAdL2WgIR0CTNalEqlP8dX2UKGgGR0BYalMyrPt2aAdN6ANoCEdAkzjPRzBAOnV9lChoBkdAZl2XqJMxoWgHTegDaAhHQJM8+4gA6uJ1fZQoaAZHQGHJ79ZRsM1oB03oA2gIR0CTPbgkTpPidX2UKGgGR0BcJZ3os7MgaAdN6ANoCEdAk0BcyN4qw3V9lChoBkdAYEVlFtsN2GgHTegDaAhHQJNDCBClabF1fZQoaAZHQGSbSX+l0o1oB03oA2gIR0CTSVrc0tROdX2UKGgGR0BkoCiqQzUJaAdN6ANoCEdAk1+GE9Mbm3V9lChoBkdAYBXyWAwwkGgHTegDaAhHQJNj8RxtHhF1fZQoaAZHQF6GhzvJA+poB03oA2gIR0CTcyMBp5/tdX2UKGgGR0BebAFTvRZ2aAdN6ANoCEdAk3m3n+yZ8nV9lChoBkdAbvqKl54W12gHTZkDaAhHQJN6tqi48U51fZQoaAZHQGBv44Ia99NoB03oA2gIR0CTfpG7SRbKdX2UKGgGR0Bchr/jsD4haAdN6ANoCEdAk38APd2xIXV9lChoBkdAZf+rOJLuhWgHTegDaAhHQJN/XZuhsZZ1fZQoaAZHQHDGXtKIznBoB00FAmgIR0CTgd8FINExdX2UKGgGR0BhxIdOqNp/aAdN6ANoCEdAk4UI8hcJMXV9lChoBkdAXDn0cwQDm2gHTegDaAhHQJOHx8stkFx1fZQoaAZHQGUe/y5I6KdoB03oA2gIR0CTit0P6KtQdX2UKGgGR0BiLNFa0QbuaAdN6ANoCEdAk49BFRYRunV9lChoBkdAYX179hqj8GgHTegDaAhHQJOQFWRzRx91fZQoaAZHQGdXSPluFYdoB03oA2gIR0CTk7/rSmZWdX2UKGgGR0Bi+Q6CDmKZaAdN6ANoCEdAk5dyJCSid3V9lChoBkdAYVAqFRHf/GgHTegDaAhHQJOgAguAZsN1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}