--- tags: - merge - mergekit - lazymergekit - Or4cl3-1/Cognitive-Agent-Gemma_7b - Or4cl3-1/agent_gemma_7b base_model: - Or4cl3-1/Cognitive-Agent-Gemma_7b - Or4cl3-1/agent_gemma_7b license: apache-2.0 library_name: transformers pipeline_tag: text-generation --- # cognitiv-agent_1 cognitiv-agent_1 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Or4cl3-1/Cognitive-Agent-Gemma_7b](https://huggingface.co/Or4cl3-1/Cognitive-Agent-Gemma_7b) * [Or4cl3-1/agent_gemma_7b](https://huggingface.co/Or4cl3-1/agent_gemma_7b) ## 🧩 Configuration ```yaml slices: - sources: - model: Or4cl3-1/Cognitive-Agent-Gemma_7b layer_range: [0, 62] - model: Or4cl3-1/agent_gemma_7b layer_range: [0, 62] merge_method: slerp base_model: Or4cl3-1/Cognitive-Agent-Gemma_7b parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Or4cl3-1/cognitiv-agent_1" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` Model Card Model Name: cognitiv-agent_1 Model Version: 1.0 Model Type: Text Generation Model Architecture: Hybrid Learning Engine, Multimodal Communication Interface ## Overview The cognitiv-agent_1 model is a merge of two underlying models, Or4cl3-1/Cognitive-Agent-Gemma_7b and Or4cl3-1/agent_gemma_7b, utilizing the LazyMergekit technique. It is designed for text generation tasks and is capable of producing coherent and contextually relevant responses to user prompts. ## Model Composition - Or4cl3-1/Cognitive-Agent-Gemma_7b - Or4cl3-1/agent_gemma_7b ## Configuration The model is configured using the following parameters: - Merge Method: slerp (spherical linear interpolation) - Layer Range: [0, 62] for both models - Parameters: - t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 - Data Type: bfloat16 ## License This model is released under the Apache License, Version 2.0. ## Usage The model can be used for text generation tasks using the provided Python code snippet. It requires the transformers and accelerate libraries. Users can input prompts and receive generated text responses. ## Ethical Considerations As with any AI model, there are ethical considerations to take into account when using the cognitiv-agent_1 model. These include: - Bias Mitigation: Ensure the model is trained on diverse and representative data to mitigate bias in generated outputs. - Privacy: Respect user privacy and confidentiality when processing user-generated prompts. - Fair Use: Use the model responsibly and avoid generating harmful or inappropriate content. ## Limitations - Performance: The model's performance may vary depending on the complexity and specificity of the input prompts. - Understanding: While the model can generate contextually relevant responses, it may not fully understand the nuances or underlying meaning of the input prompts. ## Contact Information For inquiries or support regarding the cognitiv-agent_1 model, please contact Or4cl3 AI Solutions at [contact@or4cl3.com](mailto:contact@or4cl3.com).