# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Various positional encodings for the transformer. """ import math import torch from torch import nn class TrainablePositionalEncoding(nn.Module): """Construct the embeddings from word, position and token_type embeddings. """ def __init__(self, max_position_embeddings, hidden_size, dropout=0.1): super(TrainablePositionalEncoding, self).__init__() self.position_embeddings = nn.Embedding(max_position_embeddings, hidden_size) self.LayerNorm = nn.LayerNorm(hidden_size) self.dropout = nn.Dropout(dropout) def forward(self, input_feat): """ Args: input_feat: (N, L, D) """ bsz, seq_length = input_feat.shape[:2] position_ids = torch.arange(seq_length, dtype=torch.long, device=input_feat.device) position_ids = position_ids.unsqueeze(0).repeat(bsz, 1) # (N, L) position_embeddings = self.position_embeddings(position_ids) embeddings = self.LayerNorm(input_feat + position_embeddings) embeddings = self.dropout(embeddings) return embeddings class PositionEmbeddingSine(nn.Module): """ This is a more standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images. (To 1D sequences) """ def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None): super().__init__() self.num_pos_feats = num_pos_feats self.temperature = temperature self.normalize = normalize if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") if scale is None: scale = 2 * math.pi self.scale = scale def forward(self, x, mask): """ Args: x: torch.tensor, (batch_size, L, d) mask: torch.tensor, (batch_size, L), with 1 as valid Returns: """ assert mask is not None x_embed = mask.cumsum(1, dtype=torch.float32) # (bsz, L) if self.normalize: eps = 1e-6 x_embed = x_embed / (x_embed[:, -1:] + eps) * self.scale dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) pos_x = x_embed[:, :, None] / dim_t # (bsz, L, num_pos_feats) pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3).flatten(2) # (bsz, L, num_pos_feats*2) # import ipdb; ipdb.set_trace() return pos_x # .permute(0, 2, 1) # (bsz, num_pos_feats*2, L) class PositionEmbeddingLearned(nn.Module): """ Absolute pos embedding, learned. """ def __init__(self, num_pos_feats=256): super().__init__() self.row_embed = nn.Embedding(50, num_pos_feats) self.col_embed = nn.Embedding(50, num_pos_feats) self.reset_parameters() def reset_parameters(self): nn.init.uniform_(self.row_embed.weight) nn.init.uniform_(self.col_embed.weight) def forward(self, x, mask): h, w = x.shape[-2:] i = torch.arange(w, device=x.device) j = torch.arange(h, device=x.device) x_emb = self.col_embed(i) y_emb = self.row_embed(j) pos = torch.cat([ x_emb.unsqueeze(0).repeat(h, 1, 1), y_emb.unsqueeze(1).repeat(1, w, 1), ], dim=-1).permute(2, 0, 1).unsqueeze(0).repeat(x.shape[0], 1, 1, 1) return pos def build_position_encoding(args): N_steps = args.hidden_dim if args.position_embedding in ('v2', 'sine'): # TODO find a better way of exposing other arguments position_embedding = PositionEmbeddingSine(N_steps, normalize=True) # elif args.position_embedding in ('v3', 'learned'): # position_embedding = PositionEmbeddingLearned(N_steps) else: raise ValueError(f"not supported {args.position_embedding}") if args.max_q_l == -1: args.max_q_l = 100 txt_pos_embed = TrainablePositionalEncoding( max_position_embeddings=args.max_q_l, hidden_size=args.hidden_dim, dropout=args.input_dropout) return position_embedding, txt_pos_embed