|
|
|
|
|
|
|
|
|
|
|
|
|
import warnings |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torchvision.transforms import Normalize, Resize, ToTensor |
|
|
|
|
|
class SAM2Transforms(nn.Module): |
|
def __init__( |
|
self, resolution, mask_threshold, max_hole_area=0.0, max_sprinkle_area=0.0 |
|
): |
|
""" |
|
Transforms for SAM2. |
|
""" |
|
super().__init__() |
|
self.resolution = resolution |
|
self.mask_threshold = mask_threshold |
|
self.max_hole_area = max_hole_area |
|
self.max_sprinkle_area = max_sprinkle_area |
|
self.mean = [0.485, 0.456, 0.406] |
|
self.std = [0.229, 0.224, 0.225] |
|
self.to_tensor = ToTensor() |
|
self.transforms = torch.jit.script( |
|
nn.Sequential( |
|
Resize((self.resolution, self.resolution)), |
|
Normalize(self.mean, self.std), |
|
) |
|
) |
|
|
|
def __call__(self, x): |
|
x = self.to_tensor(x) |
|
return self.transforms(x) |
|
|
|
def forward_batch(self, img_list): |
|
img_batch = [self.transforms(self.to_tensor(img)) for img in img_list] |
|
img_batch = torch.stack(img_batch, dim=0) |
|
return img_batch |
|
|
|
def transform_coords( |
|
self, coords: torch.Tensor, normalize=False, orig_hw=None |
|
) -> torch.Tensor: |
|
""" |
|
Expects a torch tensor with length 2 in the last dimension. The coordinates can be in absolute image or normalized coordinates, |
|
If the coords are in absolute image coordinates, normalize should be set to True and original image size is required. |
|
|
|
Returns |
|
Un-normalized coordinates in the range of [0, 1] which is expected by the SAM2 model. |
|
""" |
|
if normalize: |
|
assert orig_hw is not None |
|
h, w = orig_hw |
|
coords = coords.clone() |
|
coords[..., 0] = coords[..., 0] / w |
|
coords[..., 1] = coords[..., 1] / h |
|
|
|
coords = coords * self.resolution |
|
return coords |
|
|
|
def transform_boxes( |
|
self, boxes: torch.Tensor, normalize=False, orig_hw=None |
|
) -> torch.Tensor: |
|
""" |
|
Expects a tensor of shape Bx4. The coordinates can be in absolute image or normalized coordinates, |
|
if the coords are in absolute image coordinates, normalize should be set to True and original image size is required. |
|
""" |
|
boxes = self.transform_coords(boxes.reshape(-1, 2, 2), normalize, orig_hw) |
|
return boxes |
|
|
|
def postprocess_masks(self, masks: torch.Tensor, orig_hw) -> torch.Tensor: |
|
""" |
|
Perform PostProcessing on output masks. |
|
""" |
|
from sam2.utils.misc import get_connected_components |
|
|
|
masks = masks.float() |
|
input_masks = masks |
|
mask_flat = masks.flatten(0, 1).unsqueeze(1) |
|
try: |
|
if self.max_hole_area > 0: |
|
|
|
|
|
labels, areas = get_connected_components( |
|
mask_flat <= self.mask_threshold |
|
) |
|
is_hole = (labels > 0) & (areas <= self.max_hole_area) |
|
is_hole = is_hole.reshape_as(masks) |
|
|
|
masks = torch.where(is_hole, self.mask_threshold + 10.0, masks) |
|
|
|
if self.max_sprinkle_area > 0: |
|
labels, areas = get_connected_components( |
|
mask_flat > self.mask_threshold |
|
) |
|
is_hole = (labels > 0) & (areas <= self.max_sprinkle_area) |
|
is_hole = is_hole.reshape_as(masks) |
|
|
|
masks = torch.where(is_hole, self.mask_threshold - 10.0, masks) |
|
except Exception as e: |
|
|
|
warnings.warn( |
|
f"{e}\n\nSkipping the post-processing step due to the error above. You can " |
|
"still use SAM 2 and it's OK to ignore the error above, although some post-processing " |
|
"functionality may be limited (which doesn't affect the results in most cases; see " |
|
"https://github.com/facebookresearch/segment-anything-2/blob/main/INSTALL.md).", |
|
category=UserWarning, |
|
stacklevel=2, |
|
) |
|
masks = input_masks |
|
|
|
masks = F.interpolate(masks, orig_hw, mode="bilinear", align_corners=False) |
|
return masks |
|
|