# -------------------------------------------------------- # InternVL # Copyright (c) 2024 OpenGVLab # Licensed under The MIT License [see LICENSE for details] # -------------------------------------------------------- import os from typing import Union, Optional from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging logger = logging.get_logger(__name__) class InternVisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to instantiate a vision encoder according to the specified arguments, defining the model architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_channels (`int`, *optional*, defaults to 3): Number of color channels in the input images (e.g., 3 for RGB). patch_size (`int`, *optional*, defaults to 14): The size (resolution) of each patch. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. qkv_bias (`bool`, *optional*, defaults to `False`): Whether to add a bias to the queries and values in the self-attention layers. hidden_size (`int`, *optional*, defaults to 3200): Dimensionality of the encoder layers and the pooler layer. num_attention_heads (`int`, *optional*, defaults to 25): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 12800): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. qk_normalization (`bool`, *optional*, defaults to `True`): Whether to normalize the queries and keys in the self-attention layers. num_hidden_layers (`int`, *optional*, defaults to 48): Number of hidden layers in the Transformer encoder. use_flash_attn (`bool`, *optional*, defaults to `True`): Whether to use flash attention mechanism. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-6): The epsilon used by the layer normalization layers. dropout (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. drop_path_rate (`float`, *optional*, defaults to 0.0): Dropout rate for stochastic depth. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. initializer_factor (`float`, *optional*, defaults to 0.1): A factor for layer scale. """ model_type = 'intern_vit_6b' def __init__( self, num_channels=3, patch_size=14, image_size=224, qkv_bias=False, hidden_size=3200, num_attention_heads=25, intermediate_size=12800, qk_normalization=True, num_hidden_layers=48, use_flash_attn=True, hidden_act='gelu', norm_type='rms_norm', layer_norm_eps=1e-6, dropout=0.0, drop_path_rate=0.0, attention_dropout=0.0, initializer_range=0.02, initializer_factor=0.1, max_temporal_length: int = 16, temporal_causal: bool = False, temporal_adaln_zero_init: bool = False, temporal_adaln_hidden_condition: bool = False, relative_timestep_scale: float = 100, temporal_alpha_init: float = 0.0, temporal_alpha_channelwise: bool = False, temporal_module_place: Union[str, list] = "after_self_attn", temporal_layer_ids: Optional[list] = None, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.dropout = dropout self.drop_path_rate = drop_path_rate self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_channels = num_channels self.patch_size = patch_size self.image_size = image_size self.initializer_range = initializer_range self.initializer_factor = initializer_factor self.attention_dropout = attention_dropout self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.norm_type = norm_type self.qkv_bias = qkv_bias self.qk_normalization = qk_normalization self.use_flash_attn = use_flash_attn self.max_temporal_length = max_temporal_length self.temporal_causal = temporal_causal self.temporal_adaln_zero_init = temporal_adaln_zero_init self.temporal_adaln_hidden_condition = temporal_adaln_hidden_condition self.relative_timestep_scale = relative_timestep_scale self.temporal_alpha_init = temporal_alpha_init self.temporal_alpha_channelwise = temporal_alpha_channelwise self.temporal_module_place = temporal_module_place self.temporal_layer_ids = temporal_layer_ids @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig': config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) if 'vision_config' in config_dict: config_dict = config_dict['vision_config'] if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(config_dict, **kwargs) def to_dict(self): output = super().to_dict() # override temporal_config if hasattr(self, 'temporal_config'): temporal_config_dict = self.temporal_config.to_dict() output['temporal_config'] = temporal_config_dict return output