# -------------------------------------------------------- # InternVL # Copyright (c) 2024 OpenGVLab # Licensed under The MIT License [see LICENSE for details] # -------------------------------------------------------- import warnings from typing import List, Optional, Tuple, Union import torch.utils.checkpoint import transformers from torch import nn from torch.nn import CrossEntropyLoss from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM, LlamaTokenizer) from transformers.modeling_outputs import CausalLMOutputWithPast from transformers.modeling_utils import PreTrainedModel from transformers.utils import ModelOutput, logging from .configuration_pvc_internvl import PVCInternVLConfig from .conversation import get_conv_template from .modeling_intern_vit import InternVisionModel, has_flash_attn from .modeling_intern_vit_pvc import InternVisionTemporalModel, AdaLayerNorm, Timesteps, temporal_idx_abs_to_rel from .modeling_internlm2 import InternLM2ForCausalLM logger = logging.get_logger(__name__) def version_cmp(v1, v2, op='eq'): import operator from packaging import version op_func = getattr(operator, op) return op_func(version.parse(v1), version.parse(v2)) class AdaLNMLP(nn.Module): def __init__(self, input_dim, output_dim, use_temporal_condition=False, use_rel_timestep=False, rel_timestep_scale=100): super().__init__() # condition proj self.condition_proj = nn.Sequential( nn.Linear(input_dim, input_dim), nn.SiLU(), # default use `SiLU` nn.Linear(input_dim, input_dim) ) self.use_temporal_condition = use_temporal_condition self.use_rel_timestep = use_rel_timestep self.rel_timestep_scale = rel_timestep_scale # from Stable Diffusion v3 if use_temporal_condition: self.time_embed = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) self.time_proj = nn.Sequential( nn.Linear(256, input_dim), nn.SiLU(), nn.Linear(input_dim, input_dim) ) # adaln self.adaln = AdaLayerNorm(input_dim, input_dim) # original mlp self.mlp = nn.Sequential( nn.Linear(input_dim, output_dim), nn.GELU(), nn.Linear(output_dim, output_dim) ) self.gradient_checkpointing = False def forward(self, x, split_sizes, temporal_id=None): condition = self.condition_proj(x) # from Stable Diffusion v3 if self.use_temporal_condition: t = temporal_id if self.use_rel_timestep: t = temporal_idx_abs_to_rel(temporal_id, split_sizes) t = t * self.rel_timestep_scale t_embed = self.time_embed(t) t_embed = self.time_proj(t_embed.to(x.dtype)) condition = condition + t_embed.unsqueeze(1) x = self.adaln(x, condition) x = self.mlp(x) return x def build_projector_module(config: PVCInternVLConfig): vit_hidden_size = config.vision_config.hidden_size llm_hidden_size = config.llm_config.hidden_size if config.mlp_add_ops is not None and 'adaln' in config.mlp_add_ops: mlp_input_dim = vit_hidden_size * int(1 / config.downsample_ratio) ** 2 use_temporal_condition = ('temporal' in config.mlp_add_ops) use_rel_timestep = ('rel' in config.mlp_add_ops) mlp1 = AdaLNMLP(mlp_input_dim, llm_hidden_size, use_temporal_condition=use_temporal_condition, use_rel_timestep=use_rel_timestep) else: mlp1 = nn.Sequential( nn.LayerNorm(vit_hidden_size * int(1 / config.downsample_ratio) ** 2), nn.Linear(vit_hidden_size * int(1 / config.downsample_ratio) ** 2, llm_hidden_size), nn.GELU(), nn.Linear(llm_hidden_size, llm_hidden_size) ) return mlp1 def forward_projector(projector, x, **kwargs): if isinstance(projector, nn.Sequential): return projector(x) else: return projector(x, **kwargs) class PVCInternVLModel(PreTrainedModel): config_class = PVCInternVLConfig main_input_name = 'pixel_values' base_model_prefix = 'language_model' _supports_flash_attn_2 = True _no_split_modules = ['InternVisionModel', 'InternVisionTemporalModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer'] def __init__(self, config: PVCInternVLConfig, vision_model=None, language_model=None, delay_init_new_param=False, use_flash_attn=True): super().__init__(config) assert version_cmp(transformers.__version__, '4.37.0', 'ge') image_size = config.force_image_size or config.vision_config.image_size patch_size = config.vision_config.patch_size self.patch_size = patch_size self.select_layer = config.select_layer self.template = config.template self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2)) self.num_frame_token = self.num_image_token self.downsample_ratio = config.downsample_ratio self.ps_version = config.ps_version use_flash_attn = use_flash_attn if has_flash_attn else False config.vision_config.use_flash_attn = True if use_flash_attn else False config.llm_config.attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager' logger.info(f'num_image_token: {self.num_image_token}') logger.info(f'num_frame_token: {self.num_frame_token}') logger.info(f'ps_version: {self.ps_version}') if vision_model is not None: self.vision_model = vision_model else: if config.use_temporal: self.vision_model = InternVisionTemporalModel(config.vision_config, delay_init_new_param=delay_init_new_param) else: self.vision_model = InternVisionModel(config.vision_config) if language_model is not None: self.language_model = language_model else: if config.llm_config.architectures[0] == 'LlamaForCausalLM': self.language_model = LlamaForCausalLM(config.llm_config) elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM': self.language_model = InternLM2ForCausalLM(config.llm_config) else: raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.') self.mlp1 = build_projector_module(config) self.img_context_token_id = None self.conv_template = get_conv_template(self.template) self.system_message = self.conv_template.system_message def forward( self, pixel_values: torch.FloatTensor, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, image_flags: Optional[torch.LongTensor] = None, split_sizes: Optional[torch.LongTensor] = None, temporal_id: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: return_dict = return_dict if return_dict is not None else self.config.use_return_dict image_flags = image_flags.squeeze(-1) input_embeds = self.language_model.get_input_embeddings()(input_ids).clone() vit_embeds = self.extract_feature(pixel_values, split_sizes=split_sizes, temporal_id=temporal_id) vit_embeds = vit_embeds[image_flags == 1] vit_batch_size = pixel_values.shape[0] B, N, C = input_embeds.shape input_embeds = input_embeds.reshape(B * N, C) if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0: print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}') input_ids = input_ids.reshape(B * N) selected = (input_ids == self.img_context_token_id) try: input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C) except Exception as e: vit_embeds = vit_embeds.reshape(-1, C) print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, ' f'vit_embeds.shape={vit_embeds.shape}') n_token = selected.sum() input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token] input_embeds = input_embeds.reshape(B, N, C) outputs = self.language_model( inputs_embeds=input_embeds, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = outputs.logits loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def pixel_shuffle(self, x, scale_factor=0.5): n, w, h, c = x.size() # N, W, H, C --> N, W, H * scale, C // scale x = x.view(n, w, int(h * scale_factor), int(c / scale_factor)) # N, W, H * scale, C // scale --> N, H * scale, W, C // scale x = x.permute(0, 2, 1, 3).contiguous() # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2) x = x.view(n, int(h * scale_factor), int(w * scale_factor), int(c / (scale_factor * scale_factor))) if self.ps_version == 'v1': warnings.warn("In ps_version 'v1', the height and width have not been swapped back, " 'which results in a transposed image.') else: x = x.permute(0, 2, 1, 3).contiguous() return x def extract_feature(self, pixel_values, split_sizes=None, temporal_id=None): kwargs = {} # add split_sizes for temporal module if self.config.use_temporal: if split_sizes is not None: if isinstance(split_sizes, torch.Tensor): split_sizes = split_sizes.tolist() else: split_sizes = [pixel_values.shape[0]] assert sum(split_sizes) == pixel_values.shape[0] kwargs['split_sizes'] = split_sizes kwargs['temporal_id'] = temporal_id if self.select_layer == -1: vit_embeds = self.vision_model( pixel_values=pixel_values, output_hidden_states=False, return_dict=True, **kwargs ).last_hidden_state else: vit_embeds = self.vision_model( pixel_values=pixel_values, output_hidden_states=True, return_dict=True, **kwargs ).hidden_states[self.select_layer] vit_embeds = vit_embeds[:, 1:, :] h = w = int(vit_embeds.shape[1] ** 0.5) vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1) vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio) vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1]) vit_embeds = forward_projector(self.mlp1, vit_embeds, split_sizes=split_sizes, temporal_id=temporal_id) return vit_embeds def batch_chat(self, tokenizer, pixel_values, questions, generation_config, split_sizes=None, data_flag=None, num_patches_list=None, history=None, return_history=False, IMG_START_TOKEN='', IMG_END_TOKEN='', IMG_CONTEXT_TOKEN='', verbose=False, image_counts=None): if history is not None or return_history: print('Now multi-turn chat is not supported in batch_chat.') raise NotImplementedError if image_counts is not None: num_patches_list = image_counts print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.') img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) self.img_context_token_id = img_context_token_id if verbose and pixel_values is not None: image_bs = pixel_values.shape[0] print(f'dynamic ViT batch size: {image_bs}') queries = [] for idx, num_patches in enumerate(num_patches_list): question = questions[idx] if pixel_values is not None and '' not in question: question = '\n' + question template = get_conv_template(self.template) template.system_message = self.system_message template.append_message(template.roles[0], question) template.append_message(template.roles[1], None) query = template.get_prompt() image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN query = query.replace('', image_tokens, 1) queries.append(query) tokenizer.padding_side = 'left' model_inputs = tokenizer(queries, return_tensors='pt', padding=True) input_ids = model_inputs['input_ids'].to(self.device) attention_mask = model_inputs['attention_mask'].to(self.device) eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip()) generation_config['eos_token_id'] = eos_token_id generation_output = self.generate( pixel_values=pixel_values, input_ids=input_ids, attention_mask=attention_mask, split_sizes=split_sizes, **generation_config ) responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True) responses = [response.split(template.sep)[0].strip() for response in responses] return responses def chat(self, tokenizer, pixel_values, question, generation_config, num_patches_list=None, split_sizes=None, data_flag=None, history=None, return_history=False, IMG_START_TOKEN='', IMG_END_TOKEN='', IMG_CONTEXT_TOKEN='', verbose=False): # data flag: 0: pure text; 1: single image; 2: multi image; 3 video flag = data_flag[0].item() if data_flag is not None else 1 # default as single image if history is None and pixel_values is not None and '' not in question: question = '\n' + question if num_patches_list is None: num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else [] assert pixel_values is None or len(pixel_values) == sum(num_patches_list) # default as `tile id`: [0, 1, ..., n_tile] temporal_id = torch.arange(len(pixel_values), dtype=torch.long, device=pixel_values.device) if self.config.tile_repeat_way == 'cycle': new_temporal_id = [] for tid, n_tile in enumerate(num_patches_list): new_temporal_id.append(torch.tensor([tid] * n_tile, dtype=torch.long, device=pixel_values.device)) temporal_id = torch.cat(new_temporal_id) if (flag == 1 or flag == 2) and self.config.image_repeat_time > 1: if self.config.tile_repeat_way == 'cycle': cur_st = 0 new_pixel_values, new_temporal_id = [], [] for img_idx, n_tile in enumerate(num_patches_list): image = pixel_values[cur_st:cur_st+n_tile] new_pixel_values.append(torch.cat([image for _ in range(self.config.image_repeat_time)], dim=0)) new_temporal_id.append(torch.arange(img_idx * self.config.image_repeat_time, (img_idx + 1) * self.config.image_repeat_time, dtype=torch.long, device=temporal_id.device).repeat_interleave(n_tile, dim=0)) cur_st += n_tile new_pixel_values = torch.cat(new_pixel_values, dim=0) new_temporal_id = torch.cat(new_temporal_id, dim=0) assert cur_st == len(pixel_values) assert len(new_pixel_values) == len(new_temporal_id) == len(pixel_values) * self.config.image_repeat_time pixel_values, temporal_id = new_pixel_values, new_temporal_id else: pixel_values = pixel_values.repeat_interleave(self.config.image_repeat_time, dim=0) temporal_id = torch.arange(len(pixel_values), dtype=torch.long, device=pixel_values.device) split_sizes = [s * self.config.image_repeat_time for s in split_sizes] if split_sizes is not None else None num_patches_list = [n * self.config.image_repeat_time for n in num_patches_list] if num_patches_list is not None else None if flag == 3 and self.config.video_repeat_time > 1: pixel_values = pixel_values.repeat_interleave(self.config.video_repeat_time, dim=0) if self.config.tile_repeat_way == 'cycle': new_temporal_id = [] for img_idx, n_tile in enumerate(num_patches_list): new_temporal_id.append(torch.arange(img_idx * self.config.video_repeat_time, (img_idx + 1) * self.config.video_repeat_time, dtype=torch.long, device=temporal_id.device).repeat_interleave(n_tile, dim=0)) temporal_id = torch.cat(new_temporal_id, dim=0) else: temporal_id = torch.arange(len(pixel_values), dtype=torch.long, device=pixel_values.device) split_sizes = [s * self.config.video_repeat_time for s in split_sizes] if split_sizes is not None else None num_patches_list = [n * self.config.video_repeat_time for n in num_patches_list] if num_patches_list is not None else None img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) self.img_context_token_id = img_context_token_id template = get_conv_template(self.template) template.system_message = self.system_message eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip()) history = [] if history is None else history for (old_question, old_answer) in history: template.append_message(template.roles[0], old_question) template.append_message(template.roles[1], old_answer) template.append_message(template.roles[0], question) template.append_message(template.roles[1], None) query = template.get_prompt() if verbose and pixel_values is not None: image_bs = pixel_values.shape[0] print(f'dynamic ViT batch size: {image_bs}') for num_patches in num_patches_list: if flag == 0: num_image_token = 0 elif (flag == 1 or flag == 2): num_image_token = self.num_image_token * num_patches else: num_image_token = self.num_frame_token * num_patches image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * num_image_token + IMG_END_TOKEN query = query.replace('', image_tokens, 1) model_inputs = tokenizer(query, return_tensors='pt') input_ids = model_inputs['input_ids'].to(self.device) attention_mask = model_inputs['attention_mask'].to(self.device) generation_config['eos_token_id'] = eos_token_id generation_output = self.generate( pixel_values=pixel_values, input_ids=input_ids, attention_mask=attention_mask, split_sizes=split_sizes, temporal_id=temporal_id, **generation_config ) response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0] response = response.split(template.sep.strip())[0].strip() history.append((question, response)) if return_history: return response, history else: query_to_print = query.replace(IMG_CONTEXT_TOKEN, '') query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '') if verbose: print(query_to_print, response) return response @torch.no_grad() def generate( self, pixel_values: Optional[torch.FloatTensor] = None, input_ids: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, visual_features: Optional[torch.FloatTensor] = None, generation_config: Optional[GenerationConfig] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, split_sizes: Optional[torch.LongTensor] = None, temporal_id: Optional[torch.LongTensor] = None, **generate_kwargs, ) -> torch.LongTensor: assert self.img_context_token_id is not None if pixel_values is not None: if visual_features is not None: vit_embeds = visual_features else: vit_embeds = self.extract_feature(pixel_values, split_sizes=split_sizes, temporal_id=temporal_id) input_embeds = self.language_model.get_input_embeddings()(input_ids) B, N, C = input_embeds.shape input_embeds = input_embeds.reshape(B * N, C) input_ids = input_ids.reshape(B * N) selected = (input_ids == self.img_context_token_id) assert selected.sum() != 0 input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device) input_embeds = input_embeds.reshape(B, N, C) else: input_embeds = self.language_model.get_input_embeddings()(input_ids) outputs = self.language_model.generate( inputs_embeds=input_embeds, attention_mask=attention_mask, generation_config=generation_config, output_hidden_states=output_hidden_states, return_dict=return_dict, use_cache=True, **generate_kwargs, ) return outputs