# --------------------------------------------------------
# InternVL
# Copyright (c) 2024 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import warnings
from dataclasses import dataclass
from typing import Any, List, Optional, Tuple, Union
from copy import deepcopy
import torch.distributed as dist
import torch.utils.checkpoint
import torch.nn as nn
import transformers
from peft import LoraConfig, get_peft_model
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
LlamaTokenizer, Qwen2ForCausalLM)
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import ModelOutput, logging
from transformers.trainer_pt_utils import LabelSmoother
IGNORE_TOKEN_ID = LabelSmoother.ignore_index
from .configuration_internvl_chat import InternVLChatConfig
from .conversation import get_conv_template
from .modeling_internlm2 import InternLM2ForCausalLM
from .modeling_holistic_embedding import (HolisticEmbedding,
HolisticEmbeddingConfig)
logger = logging.get_logger(__name__)
def version_cmp(v1, v2, op='eq'):
import operator
from packaging import version
op_func = getattr(operator, op)
return op_func(version.parse(v1), version.parse(v2))
class InternVLChatModel(PreTrainedModel):
config_class = InternVLChatConfig
# main_input_name = 'pixel_values'
_no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer',
'Phi3DecoderLayer', 'Qwen2DecoderLayer']
_supports_flash_attn_2 = True
def __init__(self, config: InternVLChatConfig, embedding_model=None, language_model=None):
super().__init__(config)
assert version_cmp(transformers.__version__, '4.37.0', 'ge')
image_size = config.force_image_size or config.embedding_config.image_size
patch_size = config.embedding_config.patch_size
self.image_size = image_size
self.patch_size = patch_size
self.select_layer = config.select_layer
self.template = config.template
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
self.downsample_ratio = config.downsample_ratio
self.ps_version = config.ps_version
self.use_thumbnail = config.use_thumbnail
logger.info(f'num_image_token: {self.num_image_token}')
logger.info(f'ps_version: {self.ps_version}')
if embedding_model is not None:
self.embedding_model = embedding_model
else:
self.embedding_model = HolisticEmbedding(config.embedding_config)
if language_model is not None:
self.language_model = language_model
else:
if config.llm_config.architectures[0] == 'LlamaForCausalLM':
self.language_model = LlamaForCausalLM(config.llm_config)
elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM':
self.language_model = InternLM2ForCausalLM(config.llm_config)
elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM':
self.language_model = Qwen2ForCausalLM(config.llm_config)
else:
raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
self.img_context_token_id = None
self.conv_template = get_conv_template(self.template)
self.system_message = self.conv_template.system_message
self.num_samples = 0
if config.use_backbone_lora:
self.wrap_backbone_lora(r=config.use_backbone_lora, lora_alpha=2 * config.use_backbone_lora)
if config.use_llm_lora:
self.wrap_llm_lora(r=config.use_llm_lora, lora_alpha=2 * config.use_llm_lora)
def wrap_backbone_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
lora_config = LoraConfig(
r=r,
target_modules=['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2'],
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
)
self.embedding_model = get_peft_model(self.embedding_model, lora_config)
self.embedding_model.print_trainable_parameters()
def wrap_llm_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
lora_config = LoraConfig(
r=r,
target_modules=['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj', 'self_attn.o_proj',
'mlp.gate_proj', 'mlp.down_proj', 'mlp.up_proj'],
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
task_type='CAUSAL_LM'
)
self.language_model = get_peft_model(self.language_model, lora_config)
self.language_model.enable_input_require_grads()
self.language_model.print_trainable_parameters()
def forward(
self,
pixel_values: torch.FloatTensor = None,
input_ids: torch.LongTensor = None,
input_embeds: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
image_flags: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
statistics: Optional[torch.LongTensor] = None,
loss_weight: Optional[List] = None,
loss_reduction_all_gather: Optional[bool] = False,
query = None,
hd_input_ids = None,
hd_attention_mask = None,
hd_position_ids = None,
hd_input_embeds = None,
hd_labels = None,
hd_loss_weight = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_embeds is None:
if image_flags is not None:
image_flags = image_flags.squeeze(-1)
pixel_values = pixel_values[image_flags == 1]
if getattr(self.embedding_model.config, 'pixel_shuffle_loc', None) in ['post']:
assert hd_input_ids is not None, 'hd_input_ids is required for pixel_shuffle_loc=post'
embedding_input_ids = hd_input_ids
embedding_attention_mask = hd_attention_mask
embedding_position_ids = hd_position_ids
else:
embedding_input_ids = input_ids
embedding_attention_mask = attention_mask
embedding_position_ids = position_ids
image_embeds, input_embeds, next_past_key_values = self.embedding_model(input_ids=embedding_input_ids,
pixel_values=pixel_values,
attention_mask=embedding_attention_mask,
position_ids=embedding_position_ids,
use_cache=use_cache,)
B, N = embedding_input_ids.shape
image_batch_size = pixel_values.shape[0] if pixel_values is not None else 0
C = image_embeds.shape[-1]
input_embeds = input_embeds.reshape(B * N, C)
if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
print(f'dynamic ViT batch size: {image_batch_size}, images per sample: {image_batch_size / B}, dynamic token length: {N}')
if statistics is not None:
num_samples, num_padding_tokens, num_padding_images = statistics.tolist()
self.num_samples += num_samples
print(f'total_samples={self.num_samples}, {num_samples=}, {num_padding_tokens=}, {num_padding_images=}')
if image_batch_size != 0:
if getattr(self.embedding_model.config, 'pixel_shuffle_loc', None) == 'post':
B, N = input_ids.shape
llm_input_embeds = torch.zeros(input_ids.shape[1], C, device=input_ids.device, dtype=input_embeds.dtype)
llm_selected = input_ids.flatten() == self.img_context_token_id
hd_llm_selected = hd_input_ids.flatten() == self.img_context_token_id
llm_input_embeds[~llm_selected] = input_embeds[~hd_llm_selected]
llm_input_embeds[llm_selected] = image_embeds.reshape(-1, C)
input_embeds = llm_input_embeds
input_embeds = input_embeds.reshape(B, N, C)
else:
next_past_key_values = []
if getattr(self.embedding_model.config, 'pixel_shuffle_loc', None) in ['post']:
embedding_input_embeds = hd_input_embeds
embedding_attention_mask = hd_attention_mask
embedding_position_ids = hd_position_ids
else:
embedding_input_embeds = input_embeds
embedding_attention_mask = attention_mask
embedding_position_ids = position_ids
for layer_idx, layer_module in enumerate(self.embedding_model.encoder):
outputs = layer_module(
hidden_states=embedding_input_embeds,
attention_mask=embedding_attention_mask,
position_ids=embedding_position_ids,
past_key_value=past_key_values[layer_idx],
use_cache=use_cache,
)
embedding_input_embeds = outputs[0]
if use_cache:
next_past_key_values.append(outputs[1])
input_embeds = embedding_input_embeds
if self.config.normalize_encoder_output:
input_embeds = input_embeds / input_embeds.norm(dim=-1, keepdim=True)
llm_attention_mask = attention_mask
llm_position_ids = position_ids
outputs = self.language_model(
inputs_embeds=input_embeds,
attention_mask=llm_attention_mask,
position_ids=llm_position_ids,
past_key_values=past_key_values[layer_idx+1:] if past_key_values is not None else None,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs.logits
loss = None
if labels is not None and loss_weight is not None:
loss_weight = torch.tensor(loss_weight, dtype=torch.float32, device=labels.device)
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
shift_weights = loss_weight[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss(reduction='none')
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
shift_labels = shift_labels.view(-1)
shift_weights = shift_weights.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
shift_weights = shift_weights.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
shift_weights_sum = shift_weights.sum()
if loss_reduction_all_gather:
dist.all_reduce(shift_weights_sum, op=dist.ReduceOp.AVG)
loss = loss * shift_weights
loss = loss.sum() / shift_weights_sum
elif labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
if use_cache:
for past_key_value in outputs.past_key_values:
next_past_key_values.append(past_key_value)
else:
next_past_key_values = None
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=next_past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
history=None, return_history=False, IMG_START_TOKEN='', IMG_END_TOKEN='',
IMG_CONTEXT_TOKEN='', verbose=False, image_counts=None):
if history is not None or return_history:
print('Now multi-turn chat is not supported in batch_chat.')
raise NotImplementedError
if image_counts is not None:
num_patches_list = image_counts
print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
self.img_context_token_id = img_context_token_id
if verbose and pixel_values is not None:
image_bs = pixel_values.shape[0]
print(f'dynamic ViT batch size: {image_bs}')
queries = []
for idx, num_patches in enumerate(num_patches_list):
question = questions[idx]
if pixel_values is not None and '' not in question:
question = '\n' + question
template = get_conv_template(self.template)
template.append_message(template.roles[0], question)
template.append_message(template.roles[1], None)
query = template.get_prompt()
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
query = query.replace('', image_tokens, 1)
queries.append(query)
tokenizer.padding_side = 'left'
model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
input_ids = model_inputs['input_ids'].cuda()
attention_mask = model_inputs['attention_mask'].cuda()
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
generation_config['eos_token_id'] = eos_token_id
generation_output = self.generate(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
**generation_config
)
responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
responses = [response.split(template.sep)[0].strip() for response in responses]
return responses
def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
num_patches_list=None, IMG_START_TOKEN='', IMG_END_TOKEN='', IMG_CONTEXT_TOKEN='',
verbose=False):
if history is None and pixel_values is not None and '' not in question:
question = '\n' + question
if num_patches_list is None:
num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
self.img_context_token_id = img_context_token_id
template = get_conv_template(self.template)
template.system_message = self.system_message
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
history = [] if history is None else history
for (old_question, old_answer) in history:
template.append_message(template.roles[0], old_question)
template.append_message(template.roles[1], old_answer)
template.append_message(template.roles[0], question)
template.append_message(template.roles[1], None)
query = template.get_prompt()
if verbose and pixel_values is not None:
image_bs = pixel_values.shape[0]
print(f'dynamic ViT batch size: {image_bs}')
hd_query = deepcopy(query)
for num_patches in num_patches_list:
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
hd_image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * int(self.num_image_token // self.downsample_ratio**2) * num_patches + IMG_END_TOKEN
query = query.replace('', image_tokens, 1)
hd_query = hd_query.replace('', hd_image_tokens, 1)
model_inputs = tokenizer(query, return_tensors='pt')
hd_model_inputs = tokenizer(hd_query, return_tensors='pt')
input_ids = model_inputs['input_ids'].cuda()
attention_mask = model_inputs['attention_mask'].cuda()
hd_input_ids = hd_model_inputs['input_ids'].cuda()
hd_attention_mask = hd_model_inputs['attention_mask'].cuda()
generation_config['eos_token_id'] = eos_token_id
generation_output = super().generate(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
hd_input_ids=hd_input_ids,
hd_attention_mask=hd_attention_mask,
**generation_config
)
generation_output = generation_output[:, input_ids.shape[1]:]
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
response = response.split(template.sep)[0].strip()
history.append((question, response))
if return_history:
return response, history
else:
query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '')
if verbose:
print(query_to_print, response)
return response
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, input_embeds=None,
tile_pos_offsets=None, hd_input_ids=None, hd_attention_mask=None, img_mask=None, **kwargs
):
if past_key_values is not None:
past_length = past_key_values[-1][0].shape[2]
# Some generation methods already pass only the last input ID
if input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = input_ids.shape[1] - 1
input_ids = input_ids[:, remove_prefix_length:]
input_embeds = self.embedding_model.get_input_embeddings(input_ids)
hd_input_ids = input_ids
hd_input_embeds = input_embeds
position_ids = kwargs.get('position_ids', None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1]:]
hd_position_ids = kwargs.get('hd_position_ids', None)
if hd_attention_mask is not None and hd_position_ids is None:
# create position_ids on the fly for batch generation
hd_position_ids = hd_attention_mask.long().cumsum(-1) - 1
hd_position_ids.masked_fill_(hd_attention_mask == 0, 1)
if past_key_values:
hd_position_ids = hd_position_ids[:, -hd_input_ids.shape[1]:]
if input_embeds is not None:
model_inputs = {'input_embeds': input_embeds, 'hd_input_embeds': hd_input_embeds}
else:
model_inputs = {'input_ids': input_ids, 'pixel_values': kwargs.get('pixel_values'), 'hd_input_ids': hd_input_ids}
model_inputs.update(
{
'position_ids': position_ids,
'past_key_values': past_key_values,
'use_cache': kwargs.get('use_cache'),
'attention_mask': attention_mask,
'hd_position_ids': hd_position_ids,
'hd_attention_mask': hd_attention_mask,
}
)
return model_inputs