# -------------------------------------------------------- # InternVL # Copyright (c) 2023 OpenGVLab # Licensed under The MIT License [see LICENSE for details] # -------------------------------------------------------- import os from typing import Union import json from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging logger = logging.get_logger(__name__) class HolisticEmbeddingConfig(PretrainedConfig): model_type = 'holistic_embedding' def __init__( self, num_hidden_layers=32, initializer_factor=1e-5, use_autoregressive_loss=False, # vision embedding num_channels=3, patch_size=14, image_size=224, # attention layer hidden_size=4096, num_attention_heads=32, num_key_value_heads=32, attention_bias=False, attention_dropout=0.0, max_position_embeddings=4096, rope_theta=10000.0, rope_scaling=None, # mlp layer intermediate_size=11008, mlp_bias=False, hidden_act='silu', # rms norm rms_norm_eps=1e-5, # pretraining pretraining_tp=1, use_ls=True, use_img_start_end_tokens=True, special_token_maps={}, llm_vocab_size=92553, llm_hidden_size=2048, attn_implementation='flash_attention_2', downsample_ratio=0.5, img_context_token_id=92546, pixel_shuffle_loc="pre", **kwargs, ): super().__init__(**kwargs) self.num_hidden_layers = num_hidden_layers self.initializer_factor = initializer_factor self.use_autoregressive_loss = use_autoregressive_loss self.num_channels = num_channels self.patch_size = patch_size self.image_size = image_size self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.attention_bias = attention_bias self.attention_dropout = attention_dropout self.max_position_embeddings = max_position_embeddings self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.intermediate_size = intermediate_size self.mlp_bias = mlp_bias self.hidden_act = hidden_act self.rms_norm_eps = rms_norm_eps self.pretraining_tp = pretraining_tp self.use_ls = use_ls self.use_img_start_end_tokens = use_img_start_end_tokens self.special_token_maps = special_token_maps self.llm_vocab_size = llm_vocab_size self.llm_hidden_size = llm_hidden_size self.attn_implementation = attn_implementation self.downsample_ratio = downsample_ratio self.img_context_token_id = img_context_token_id self.pixel_shuffle_loc = pixel_shuffle_loc @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig': config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) if 'vision_config' in config_dict: config_dict = config_dict['vision_config'] if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(config_dict, **kwargs) @classmethod def from_dict_path(cls, config_path): with open(config_path, 'r') as f: config_dict = json.load(f) return cls.from_dict(config_dict)