import os import json import torch from torch.utils.data import Dataset from torchvision.datasets.utils import download_url from PIL import Image, ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True from glob import glob from data.utils import pre_caption class facecaption_train(Dataset): def __init__(self, transform, image_root, ann_root, max_words=65, prompt=''): ''' image_root (string): Root directory of images (e.g. coco/images/) ann_root (string): directory to store the annotation file ''' all_json = sorted(glob(os.path.join(ann_root, '*.json'))) self.annotation = [] # for json_path in all_json[:-1]: for json_path in all_json[0:1]: print("loading " + json_path) with open(json_path, 'r') as json_file: data = json.load(json_file) self.annotation.extend(data) self.transform = transform self.image_root = image_root self.max_words = max_words self.prompt = prompt self.img_ids = {} n = 0 for ann in self.annotation: img_id = ann['image_id']#[7:] if img_id not in self.img_ids.keys(): self.img_ids[img_id] = n n += 1 def __len__(self): return len(self.annotation) def __getitem__(self, index): ann = self.annotation[index] image_path = os.path.join(self.image_root, ann['image']) # for face image # image_path = os.path.join(self.image_root, ann['image'][:21]+'.jpg') # for laion image image = Image.open(image_path).convert('RGB') image = self.transform(image) caption = self.prompt + pre_caption(*ann['caption'], self.max_words) # for face caption in captionV3 # laion_caption = ann['laion_caption'][0] if ann['laion_caption'][0] is not None else "" # caption = self.prompt + pre_caption(laion_caption, self.max_words) # for laion caption in captionV3 image_id = self.img_ids[ann['image_id']] return image, caption, image_id class facecaption_test(Dataset): def __init__(self, transform, image_root, ann_root, max_words=65): ''' image_root (string): Root directory of images (e.g. coco/images/) ann_root (string): directory to store the annotation file ''' all_json = sorted(glob(os.path.join(ann_root, '*.json'))) self.annotation = [] for json_path in all_json[-1:]: with open(json_path, 'r') as json_file: data = json.load(json_file) self.annotation.extend(data) self.annotation = self.annotation[:5000] self.transform = transform self.image_root = image_root self.text = [] self.image = [] self.txt2img = {} self.img2txt = {} txt_id = 0 for img_id, ann in enumerate(self.annotation): self.image.append(ann['image']) # for face image # self.image.append(ann['image'][:21]+'.jpg') # for laion image self.img2txt[img_id] = [] # for i, caption in enumerate(ann['laion_caption']): # for laion caption in captionV3 for i, caption in enumerate(ann['caption']): # for face caption in captionV3 self.text.append(pre_caption(caption, max_words)) self.img2txt[img_id].append(txt_id) self.txt2img[txt_id] = img_id txt_id += 1 def __len__(self): return len(self.annotation) def __getitem__(self, index): ann = self.annotation[index] image_path = os.path.join(self.image_root, ann['image']) # for face image # image_path = os.path.join(self.image_root, ann['image'][:21]+'.jpg') # for laion image image = Image.open(image_path).convert('RGB') image = self.transform(image) return image, index