--- license: agpl-3.0 pipeline_tag: text-generation tags: - chemistry language: - en - zh --- # ChemDFM-13B: An LLM-Based Dialogue Foundation Model for Chemistry ![Main Image](https://github.com/OpenDFM/ChemDFM/raw/main/docs/static/images/main.png) ChemDFM is the pioneering open-sourced dialogue foundation model for Chemistry and molecule science, which is build based on LLaMa-13B. ChemDFM outperforms the open-sourced LLMs in all the typical tasks of chemistry, and even reach comparable or higher performances of GPT-4. For more details, please refer to [our paper](https://arxiv.org/abs/2401.14818). ## News * 2024-11-09: [ChemDFM-v1.5-8B](https://huggingface.co/OpenDFM/ChemDFM-v1.5-8B) is released! We implemented our domain pre-training and instruction tuning precedure on a stronger base model LLaMA-3-8B. * **2024-06-13**: The results on the comprehensive science benchmark [SciKnowEval](https://huggingface.co/datasets/hicai-zju/SciKnowEval) show that "ChemDFM emerged as one of the top open-source models by continuing pre-training and fine-tuning on a vast corpus of scientific literature". * **2024-04-17**: The evaluation data (including instructions) we used in our paper is released on [GitHub](https://github.com/OpenDFM/ChemDFM) * **2024-03-12**: The parameter of [ChemDFM-13B](ihttps://huggingface.co/OpenDFM/ChemDFM-13B-v1.0) is open-sourced! * **2024-01-26**: The paper of ChemDFM-13B is released on arXiv: [ChemDFM: Dialogue Foundation Model for Chemistry](https://arxiv.org/abs/2401.14818) ## Usage Details The online demo of ChemDFM will be up soon! ### local inference To load and run ChemDFM locally, here is an example: ```python import torch from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig model_name_or_id = "OpenDFM/ChemDFM-v1.5-8B" tokenizer = LlamaTokenizer.from_pretrained(model_name_or_id) model = LlamaForCausalLM.from_pretrained(model_name_or_id, torch_dtype=torch.float16, device_map="auto") input_text = "Can you please give detailed descriptions of the molecule below?\nCl.O=C1c2c(O)cccc2-c2nn(CCNCCO)c3ccc(NCCNCCO)c1c23" input_text = f"[Round 0]\nHuman: {input_text}\nAssistant:" inputs = tokenizer(input_text, return_tensors="pt").to("cuda") generation_config = GenerationConfig( do_sample=True, top_k=20, top_p=0.9, temperature=0.9, max_new_tokens=1024, repetition_penalty=1.05, eos_token_id=tokenizer.eos_token_id ) outputs = model.generate(**inputs, generation_config=generation_config) generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0][len(input_text):] print(generated_text.strip()) ``` ### input format To get better responses, we recommend to preprocess your input and history with the dialogue templates which are used during instruction tuning of ChemDFM. Specifically, for an input queries ```python {'current_query': current_query, 'history': [(query1, answer1), (query2, answer2), ...]} ``` , you can use the following code to preprocess the input and history: ```python def formatting_input(current_query, history): input_text = '' for idx, (query, answer) in history: input_text += f"[Round {idx}]\nHuman: {query}\nAssistant: {answer}\n" input_text += f"[Round {len(history)}]\nHuman: {current_query}\nAssistant:" return input_text ``` ### SMILES preprocess When there involves SMILES notation in your input, we recommend to preprocess the SMILES with the `rdkit` package to canonicalize the SMILES. Here is an example: ```python from rdkit import Chem def canonicalize_smiles(smiles): mol = Chem.MolFromSmiles(smiles) if mol is None: return None return Chem.MolToSmiles(mol, isomericSmiles=True, kekuleSmiles=False) ``` or directly: ```python from rdkit import Chem def canonicalize_smiles(smiles): return Chem.CanonSmiles(smiles, useChiral=True) ``` ## Citation ```bibtex @misc{zhao2024chemdfm, title={ChemDFM: Dialogue Foundation Model for Chemistry}, author={Zihan Zhao and Da Ma and Lu Chen and Liangtai Sun and Zihao Li and Hongshen Xu and Zichen Zhu and Su Zhu and Shuai Fan and Guodong Shen and Xin Chen and Kai Yu}, year={2024}, eprint={2401.14818}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## Disclaimer Current version of ChemDFM may generate incorrect or misleading information. Please use it with caution and verify the results with domain experts before making any decisions based on the results. ## Contact If you have any questions or further requests, please contact [Zihan Zhao](mailto:zhao_mengxin@sjtu.edu.cn) and [Lu Chen](mailto:chenlusz@sjtu.edu.cn).