--- license: other --- # llama2-13b-megacode2-oasst - sampling report: [2023-08-15_andreaskoepf_llama2-13b-megacode2-oasst_sampling_noprefix2.json](https://open-assistant.github.io/oasst-model-eval/?f=https%3A%2F%2Fraw.githubusercontent.com%2FOpen-Assistant%2Foasst-model-eval%2Fmain%2Fsampling_reports%2Foasst-sft%2F2023-08-15_andreaskoepf_llama2-13b-megacode2-oasst_sampling_noprefix2.json) ### Prompt template [chatml](https://github.com/openai/openai-python/blob/main/chatml.md) format is used: "<|im_start|>user\n{user prompt}<|im_end|>\n<|im_start|>assistant\n{Assistant answer}<|im_end|>\n" Multi-line: ``` <|im_start|>user {user prompt}<|im_end|> <|im_start|>assistant {Assistant answer}<|im_end|> ``` ### Credits & Special Thanks - Compute was generously sponsored by the eplf [Machine Learning and Optimization Laboratory](https://www.epfl.ch/labs/mlo/) - The open-source [epfLLM/Megatron-LLM](https://github.com/epfLLM/Megatron-LLM) trainer was used for fine-tuning. - [rombodawg](https://huggingface.co/rombodawg) curated and published [LosslessMegaCodeTrainingV2_1m_Evol_Uncensored](https://huggingface.co/datasets/rombodawg/LosslessMegaCodeTrainingV2_1m_Evol_Uncensored) - [andreaskoepf](https://github.com/andreaskoepf/) prepared & orchestrated the training. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_OpenAssistant__llama2-13b-megacode2-oasst) | Metric | Value | |-----------------------|---------------------------| | Avg. | 49.61 | | ARC (25-shot) | 60.67 | | HellaSwag (10-shot) | 81.93 | | MMLU (5-shot) | 57.38 | | TruthfulQA (0-shot) | 47.85 | | Winogrande (5-shot) | 76.16 | | GSM8K (5-shot) | 15.54 | | DROP (3-shot) | 7.74 |