Upload 6 files
Browse files- .gitattributes +1 -0
- Emmi Elliott - Face to Face.wav +3 -0
- Estella.py +165 -0
- inference.py +21 -0
- label_encoder.npy +3 -0
- script.sh +11 -0
- sound_classification_model.h5 +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
Emmi[[:space:]]Elliott[[:space:]]-[[:space:]]Face[[:space:]]to[[:space:]]Face.wav filter=lfs diff=lfs merge=lfs -text
|
Emmi Elliott - Face to Face.wav
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b9f77eb947cff98dce0ad0353faed3ac48566ac77e97ab94117131b55be2bf3d
|
| 3 |
+
size 2911547
|
Estella.py
ADDED
|
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import numpy as np
|
| 3 |
+
import librosa
|
| 4 |
+
import tensorflow as tf
|
| 5 |
+
from tensorflow.keras.models import Sequential
|
| 6 |
+
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
|
| 7 |
+
from sklearn.preprocessing import LabelEncoder
|
| 8 |
+
from sklearn.model_selection import train_test_split
|
| 9 |
+
import re
|
| 10 |
+
|
| 11 |
+
# Constants
|
| 12 |
+
SAMPLE_RATE = 44100 # Sample rate
|
| 13 |
+
NUM_MFCC = 13
|
| 14 |
+
MAX_LEN = 1000
|
| 15 |
+
WINDOW_SIZE = 1 # Window size in seconds
|
| 16 |
+
HOP_SIZE = 1 # Hop size (overlap) in seconds
|
| 17 |
+
|
| 18 |
+
# Function to extract MFCC features
|
| 19 |
+
def extract_features(file_path):
|
| 20 |
+
y, sr = librosa.load(file_path, sr=SAMPLE_RATE)
|
| 21 |
+
mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=NUM_MFCC)
|
| 22 |
+
|
| 23 |
+
# Pad or truncate MFCCs to a fixed length
|
| 24 |
+
if mfccs.shape[1] < MAX_LEN:
|
| 25 |
+
padding = MAX_LEN - mfccs.shape[1]
|
| 26 |
+
mfccs = np.pad(mfccs, ((0, 0), (0, padding)), mode='constant')
|
| 27 |
+
else:
|
| 28 |
+
mfccs = mfccs[:, :MAX_LEN]
|
| 29 |
+
|
| 30 |
+
return mfccs
|
| 31 |
+
|
| 32 |
+
# Load dataset
|
| 33 |
+
def load_data(dataset_path):
|
| 34 |
+
features = []
|
| 35 |
+
labels = []
|
| 36 |
+
|
| 37 |
+
# Regex pattern to extract class name from filename
|
| 38 |
+
pattern = re.compile(r'^(.*?)(?: \d+)?\.wav$')
|
| 39 |
+
|
| 40 |
+
for file_name in os.listdir(dataset_path):
|
| 41 |
+
if file_name.endswith('.wav'):
|
| 42 |
+
file_path = os.path.join(dataset_path, file_name)
|
| 43 |
+
match = pattern.match(file_name)
|
| 44 |
+
if match:
|
| 45 |
+
label = match.group(1) # Extract class name without number
|
| 46 |
+
mfccs = extract_features(file_path)
|
| 47 |
+
features.append(mfccs)
|
| 48 |
+
labels.append(label)
|
| 49 |
+
|
| 50 |
+
if len(features) == 0 or len(labels) == 0:
|
| 51 |
+
raise ValueError("No data found. Ensure the dataset path is correct and contains .wav files.")
|
| 52 |
+
|
| 53 |
+
return np.array(features), np.array(labels)
|
| 54 |
+
|
| 55 |
+
# Load data
|
| 56 |
+
dataset_path = 'dataset'
|
| 57 |
+
X, y = load_data(dataset_path)
|
| 58 |
+
|
| 59 |
+
# Encode labels
|
| 60 |
+
label_encoder = LabelEncoder()
|
| 61 |
+
y_encoded = label_encoder.fit_transform(y)
|
| 62 |
+
y_categorical = tf.keras.utils.to_categorical(y_encoded)
|
| 63 |
+
|
| 64 |
+
# Save LabelEncoder
|
| 65 |
+
np.save('label_encoder.npy', label_encoder.classes_)
|
| 66 |
+
|
| 67 |
+
# Split data
|
| 68 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y_categorical, test_size=0.2, random_state=42)
|
| 69 |
+
|
| 70 |
+
# Build model
|
| 71 |
+
model = Sequential([
|
| 72 |
+
tf.keras.layers.Input(shape=(NUM_MFCC, MAX_LEN, 1)),
|
| 73 |
+
Conv2D(32, kernel_size=(3, 3), activation='relu'),
|
| 74 |
+
MaxPooling2D(pool_size=(2, 2)),
|
| 75 |
+
Conv2D(64, kernel_size=(3, 3), activation='relu'),
|
| 76 |
+
MaxPooling2D(pool_size=(2, 2)),
|
| 77 |
+
Flatten(),
|
| 78 |
+
Dense(128, activation='relu'),
|
| 79 |
+
Dropout(0.5),
|
| 80 |
+
Dense(len(np.unique(y_encoded)), activation='softmax')
|
| 81 |
+
])
|
| 82 |
+
|
| 83 |
+
# Adjust learning rate if necessary
|
| 84 |
+
from tensorflow.keras.optimizers import Adam
|
| 85 |
+
|
| 86 |
+
learning_rate = 0.0001 # Adjust as necessary
|
| 87 |
+
optimizer = Adam(learning_rate=learning_rate)
|
| 88 |
+
model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
|
| 89 |
+
|
| 90 |
+
# Reshape data for the model
|
| 91 |
+
X_train = np.expand_dims(X_train, axis=-1)
|
| 92 |
+
X_test = np.expand_dims(X_test, axis=-1)
|
| 93 |
+
|
| 94 |
+
# Train model
|
| 95 |
+
history = model.fit(X_train, y_train, epochs=20, validation_data=(X_test, y_test))
|
| 96 |
+
|
| 97 |
+
# Save model
|
| 98 |
+
model.save('sound_classification_model.h5')
|
| 99 |
+
|
| 100 |
+
# Evaluate model
|
| 101 |
+
loss, accuracy = model.evaluate(X_test, y_test)
|
| 102 |
+
print(f"Test accuracy: {accuracy}")
|
| 103 |
+
|
| 104 |
+
# Function to classify audio in sliding windows with overlapping handling
|
| 105 |
+
def classify_audio(file_path, model, label_encoder, window_size=WINDOW_SIZE, hop_size=HOP_SIZE):
|
| 106 |
+
y, sr = librosa.load(file_path, sr=SAMPLE_RATE)
|
| 107 |
+
total_duration = librosa.get_duration(y=y, sr=sr)
|
| 108 |
+
window_samples = int(window_size * sr)
|
| 109 |
+
hop_samples = int(hop_size * sr)
|
| 110 |
+
|
| 111 |
+
results = []
|
| 112 |
+
detected_windows = [] # List to keep track of detected windows
|
| 113 |
+
|
| 114 |
+
for start in range(0, len(y) - window_samples + 1, hop_samples):
|
| 115 |
+
end = start + window_samples
|
| 116 |
+
segment = y[start:end]
|
| 117 |
+
mfccs = librosa.feature.mfcc(y=segment, sr=sr, n_mfcc=NUM_MFCC)
|
| 118 |
+
|
| 119 |
+
# Pad or truncate MFCCs
|
| 120 |
+
if mfccs.shape[1] < MAX_LEN:
|
| 121 |
+
padding = MAX_LEN - mfccs.shape[1]
|
| 122 |
+
mfccs = np.pad(mfccs, ((0, 0), (0, padding)), mode='constant')
|
| 123 |
+
else:
|
| 124 |
+
mfccs = mfccs[:, :MAX_LEN]
|
| 125 |
+
|
| 126 |
+
mfccs = np.expand_dims(mfccs, axis=0)
|
| 127 |
+
mfccs = np.expand_dims(mfccs, axis=-1)
|
| 128 |
+
prediction = model.predict(mfccs)
|
| 129 |
+
predicted_class = np.argmax(prediction, axis=1)
|
| 130 |
+
time = start / sr
|
| 131 |
+
class_label = label_encoder.inverse_transform(predicted_class)[0]
|
| 132 |
+
|
| 133 |
+
# Check for overlaps and add detected regions
|
| 134 |
+
detected = False
|
| 135 |
+
for (det_start, det_end, det_label) in detected_windows:
|
| 136 |
+
if (start < det_end and end > det_start): # Overlapping condition
|
| 137 |
+
detected = True
|
| 138 |
+
break
|
| 139 |
+
|
| 140 |
+
if not detected:
|
| 141 |
+
results.append((time, class_label))
|
| 142 |
+
detected_windows.append((start, end, class_label))
|
| 143 |
+
|
| 144 |
+
return results
|
| 145 |
+
|
| 146 |
+
# Example usage
|
| 147 |
+
if __name__ == "__main__":
|
| 148 |
+
# Load model and label encoder
|
| 149 |
+
def load_model_and_encoder(model_path, label_encoder_path):
|
| 150 |
+
model = tf.keras.models.load_model(model_path)
|
| 151 |
+
classes = np.load(label_encoder_path, allow_pickle=True)
|
| 152 |
+
label_encoder = LabelEncoder()
|
| 153 |
+
label_encoder.classes_ = classes
|
| 154 |
+
return model, label_encoder
|
| 155 |
+
|
| 156 |
+
model_path = 'sound_classification_model.h5'
|
| 157 |
+
label_encoder_path = 'label_encoder.npy'
|
| 158 |
+
audio_path = 'dataset/Debris Wood 02.wav'
|
| 159 |
+
|
| 160 |
+
model, label_encoder = load_model_and_encoder(model_path, label_encoder_path)
|
| 161 |
+
|
| 162 |
+
sound_identifications = classify_audio(audio_path, model, label_encoder)
|
| 163 |
+
|
| 164 |
+
for time, label in sound_identifications:
|
| 165 |
+
print(f'[{time:.2f} seconds] Class: {label}')
|
inference.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
# Example usage
|
| 3 |
+
if __name__ == "__main__":
|
| 4 |
+
# Load model and label encoder
|
| 5 |
+
def load_model_and_encoder(model_path, label_encoder_path):
|
| 6 |
+
model = tf.keras.models.load_model(model_path)
|
| 7 |
+
classes = np.load(label_encoder_path, allow_pickle=True)
|
| 8 |
+
label_encoder = LabelEncoder()
|
| 9 |
+
label_encoder.classes_ = classes
|
| 10 |
+
return model, label_encoder
|
| 11 |
+
|
| 12 |
+
model_path = 'sound_classification_model.h5'
|
| 13 |
+
label_encoder_path = 'label_encoder.npy'
|
| 14 |
+
audio_path = 'Emmi Elliott - Face to Face.wav'
|
| 15 |
+
|
| 16 |
+
model, label_encoder = load_model_and_encoder(model_path, label_encoder_path)
|
| 17 |
+
|
| 18 |
+
sound_identifications = classify_audio(audio_path, model, label_encoder)
|
| 19 |
+
|
| 20 |
+
for time, label in sound_identifications:
|
| 21 |
+
print(f'[{time:.2f} seconds] Class: {label}')
|
label_encoder.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3c20e529c407fd1ab8124e552250df89ef7e0cf8eeb731a178f9da40c8a334b1
|
| 3 |
+
size 98072
|
script.sh
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
cd dataset
|
| 2 |
+
|
| 3 |
+
#!/bin/bash
|
| 4 |
+
|
| 5 |
+
# Loop through all .caf files in the current directory
|
| 6 |
+
for file in *.caf; do
|
| 7 |
+
# Extract the base name of the file (without extension)
|
| 8 |
+
base="${file%.*}"
|
| 9 |
+
# Convert .caf to .wav using ffmpeg
|
| 10 |
+
ffmpeg -i "$file" "${base}.wav"
|
| 11 |
+
done
|
sound_classification_model.h5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:44d94b10c7a04909c1f866e0f502ae3b0649da9d9c8e1e71fd50b9c93fd4e5f1
|
| 3 |
+
size 25801576
|